- Tài khoản và mật khẩu chỉ cung cấp cho sinh viên, giảng viên, cán bộ của TRƯỜNG ĐẠI HỌC FPT
- Hướng dẫn sử dụng: Xem Video .
- Danh mục tài liệu mới: Tại đây .
- Đăng nhập : Tại đây .
SỐ LƯỢT TRUY CẬP


accurate visitors web counter
Visits Counter
FPT University|e-Resources > Đồ án tốt nghiệp (Dissertations) > Khoa học máy tính - Trí tuệ nhân tạo >
Please use this identifier to cite or link to this item: http://ds.libol.fpt.edu.vn/handle/123456789/3989

Title: A Deep Learning Model for Helmet Detection and Automatic License Plate Recognition
Other Titles: Mô hình học sâu để phát hiện mũ bảo hiểm và nhận dạng biển số xe tự động
Authors: Bùi, Văn Hiếu
Phạm, Trung Hiếu
Vũ, Văn Nghiệp
Keywords: Trí tuệ nhân tạo
Artificial Intelligence
ByteTrack
YOLOv8m
Helmet detection
License plate recognition
Deep Learning
Model
Issue Date: 2023
Publisher: FPTU Hà Nội
Abstract: Not wearing a helmet among motorbike drivers is one of the leading causes of fatal accidents in developing countries. Detecting individuals not wearing helmets through license plates plays an important role in monitoring, reminding and punishing violators to help reduce accidents. Current models for detecting traffic violators through license plates are facing many limitations, such as difficulty detecting multiple vehicles in one frame, and ineffective methods for identifying license plates and people in the same vehicle and cannot simultaneously perform both parts: detecting people not wearing helmets and license plate recognition. Our proposed pipeline consists of two steps. Step 1 is to identify violating vehicles using YOLOv8m. Step 2 is to extract license plate information using the PaddleOCR library. To resolve confusion between objects, we use Bytetrack in first step to track and analyze. In both steps, post-processing techniques are developed to avoid errors in the identification process. This technique will take the class that appears most frequently in the motorcyclist's box and assign them together. Through testing, the model achieved high accuracy with mAP (mean Average Precision) is 97.9% and an accurate license plate recognition rate of 90.4%. Research results show that the proposed model achieves impressive efficiency in both tasks, helping to improve traffic safety and traffic management effectively
URI: http://ds.libol.fpt.edu.vn/handle/123456789/3989
Appears in Collections:Khoa học máy tính - Trí tuệ nhân tạo

Files in This Item:

File Description SizeFormat
Report-A-Deep-Learning-Model.pdfFree1.96 MBAdobe PDF book.png
View/Open
Slide-A-Deep-Learning-Model.pdfFree30.4 MBAdobe PDF book.png
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  Collections Copyright © FPT University

FSE Hoa Lac Library

Add : Room 107, 1st floor, Hoa Lac campus, Km28 Thang Long Avenue, Hoa Lac Hi-Tech Park

Office tel: + 844.66805912  / Email :  [email protected]

 - Feedback