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ABSTRACT

Abstract

This work presents a supervised speech enhancement method using a deep con-

volutional neural network (CNN). The proposed CNN is based on a Convo-

lutional Autoencoder architecture with symmetric skip-connections. Additionally,

we focus on building a novel and robust dataset for this task. The data contains

a clean speech dataset and a noise dataset, and each outweighs its counterpart

used in recent works. Finally, we investigate the performance of the system on

many levels of noise by performing the evaluation using objective metrics that

are commonly used in this area.

Index terms: Speech enhancement, Speech denoising, Convolutional Neural Net-

work, Convolutional Autoencoder, Unet, Deep learning.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

There is an increasing need for ways to enhance the quality of speech. The

task of speech enhancement is to improve the perceptual quality of speech sig-

nals, especially by suppressing background noises. Noises from the environment,

animals, machines, etc, exist in the majority of verbal recordings. Hence, speech

enhancement plays an important role in audio-related forms of communication

like voice calls, helping people with hearing loss, or serving as the preliminary

for speech recognition systems. With the rising computing strength of hardware

such as GPU, a trend of using deep neural networks (DNNs) rather than tradi-

tional approaches to denoise speech has emerged. There has been an increasing

attention in DNN-based speech denoising solutions in recent years.

Pioneers in this area have emerged over a decade ago. For example, in [1],

the authors use a very simple neural network model (compared to contempo-

rary models) with only one hidden layer to get rid of reverberation. Another

thesis also released in 2009 is [2], which included a simple model called ADA-

LINE, with some hidden layers. As this area gains more attention, the models

have increased dramatically in both size and complexity. Researchers have tried

many ways to raise performance, such as applying Bayesian Wavenet [3], using

multiple deep neural networks [4], or resorting to hybrid approaches [5]. Over

6



CHAPTER 1. INTRODUCTION

time, approaches are now converging to some common methods:

• Using Recurrent Neural Network (RNN): This straightforward approach is

effective when the data is chain-like. RNN is difficult to train in gen-

eral because the gradient of RNN vanishes or explodes at an exponential

rate when backpropagation to the same layer is repeated. The notorious

vanishing/exploding gradient problem is always concerning researchers us-

ing RNN [6]. The most commonly used among the methods which have

been proposed as a solution [7–9] is long short-term memory (LSTM) [9].

LSTM partially solves the vanishing gradient problem by integrating three

gated units (input gate, forget gate, and output gate). LSTM and the

bidirectional LSTM (BLSTM) have been applied to speech denoising and

worked better than the traditional approaches at the time because they can

be trained efficiently in practice [10–13]. Nevertheless, the reduction of

the vanishing gradient problem when using LSTM is attached to the high

computational cost as it has a large number of parameters. Thus, if the

gradient problem can be solved in a different way, a simpler RNN should

be more suitable than LSTM, particularly for real-time speech enhance-

ment [14].

• Using Convolutional Neural Network (CNN): This type of model is effec-

tive when the data is image-like, or matrix-like. Because of their weight

sharing property, Convolutional Neural Networks (CNN) generally have

fewer parameters than FNNs and RNNs. CNNs have already demonstrated

their effectiveness in extracting features in speech recognition [15, 16] and

removing noise from images [17,18]. Recent research suggests that a con-

volutional neural network (CNN) may be used as a convolutional denois-

ing autoencoder (CDAE). This type of DNN architecture is most com-

monly used in image classification and feature detection, where it outper-

formed all other methods [19].

• Using Convolutional Recurrent Neural Network (CRNN): Recently, researchers

7



CHAPTER 1. INTRODUCTION

started to apply combinations of these two models to utilize the advantage

of both. The common mixture is the convolutional encoder and decoder

part placed at both the beginning and the end of the model, handling the

spectrogram data, while the RNN, which tend to be LSTM chains, is at

the middle to extract the characteristic of ‘chain like’ data. This model

structure is getting impressive performance, some of them are even de-

signed for real-time speech enhancement with high accuracy [20].

With two out of three main approaches having convolutional layers at the be-

ginning of the model, it is reasonable that researchers recently tend to use

spectrogram data, rather than signals in the time domain as the input of the

DNNs. Each work has its variation, but in general, the flow is standardized:

The researchers convert their audio data to spectrogram form and then feed the

model, use the model to denoise this spectrogram to obtain the ‘clean’ spectro-

gram, and eventually convert it back to time-domain waveforms [20–25].

Respecting the task of data pre-processing, the common procedures are to col-

lect clean voice data and noise data, blend them to make a noisy voice dataset

for training neural networks, and use the original clean voice to evaluate the

predicted clean voice [20–26].

There are still multiple headaches for researchers in this area. One of the

biggest hindrances is data shortage. Compared to other types of data like image

or text, audio data is much harder to collect, refine, and examine in general.

Therefore the number of reliable audio datasets is rather limited. Besides, al-

most all present datasets contain only one language in their corpus, and models

trained on these datasets are not promised to perform well on speech in other

languages [23].
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CHAPTER 1. INTRODUCTION

1.2 Idea and motivation

The rising tide of using the Convolutional Encoder-Decoder and its variations

has proved the efficiency of this model [22–24]. This type of model needs the

input to be in image form, so we have to convert our original audio data -

time-domain waveform - to data in image form. In this thesis, we follow the

common pattern, which feeds the STFT spectrogram of the noisy speech to the

model, predict a spectrogram version of the clean voice, and eventually convert

it back to waveform as the final product. In this approach, we predict the noise

spectra instead of directly predicting the clean voice spectra. The reconstruction

of noise, which normally makes up a minority of a record, would be easier to

execute than rebuilding the clean voice. Therefore we set the noise spectra as

the output of our model, then use itself and the original noisy voice spectra to

get the clean voice spectra by the simple subtraction.

There is also a motif concerning data collecting and pre-processing among re-

cent works in this area. That is to take a dataset of clean speech and noise,

then blend them to get the noisy speech, then use the noisy speech for the

input and compare the output with the original clean speech. Combined with

some data augmentation techniques, a small dataset can turn into an acceptably

large collection of speech signals for training and testing. However, a small

initial dataset would still be an obstacle for works in the present and future to

reach the stage of production.

About clean speech, there are a bunch of datasets used. In [2], the authors

use RSR2015, which contains 71 hours of clean speech spoken by 300 speak-

ers. In [5], [21], and [22] the TIMIT database is used for clean speech, which

was released in 1988 with 52 hours and 630 speakers. In [27], [28], the au-

thors use IEEE corpus for clean speech, which contains only about 1 hour of

audio material. In [20], [24] and [29], the data for clean speech is the Wall

Street Journal dataset (WSJ0), which contains 43 hours of speech recorded by

91 speakers. In a world that is home to nearly 8 billion people, these datasets
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CHAPTER 1. INTRODUCTION

still seem deficient.

About the noise, reliable sources of data are rather scarce. In [4], [27], [28],

the authors use NOISEX, NOIZEUS, and AURORA respectively. Each of these

datasets contains about 10 classes of ambient noises, which is not enough for

production in the real world with uncountable sources of environmental sound.

To enhance the performance of a speech enhancement system, many researchers

choose to apply a more complicated model such as the mixture of CNN and

RNN [20, 21, 26]. But the increase of layers, parameters put more computing

and memory strain on the system, making it hard to install it on light devices

such as smartphones or other gadgets in the 4.0 ecosystem. Therefore, we de-

cide to use a common model rather than invest the effort in improving it, as

well as common methods of collecting and preprocessing data. Instead, we get

more data in both clean speech and noise, examine, refine, and thoroughly pre-

process them so that they help our model achieve state-of-the-art performance.

1.3 Related Works

• A fully convolutional neural network for speech enhancement (Park &

Lee, 2016) [22]:

The model proposed in this thesis is an alternative convolutional network

architecture - Redundant Convolutional Encoder-Decoder (R-CED). The dif-

ference between it and other common Convolutional Encoder-Decoders lies

in getting rid of the pooling and upsampling layers. It still reserves the

symmetric characteristics, but in contradiction to CED, R-CED encodes

the features into higher dimensions alongside the encoder and achieves

compression alongside the decoder.

10



CHAPTER 1. INTRODUCTION

Figure 1.1: R-CED

• A Convolutional Recurrent Neural Network for Real-Time Speech Enhance-

ment (Tan & Wang, 2018) [20]:

The model is a typical combination of CNNs and RNNs. By integrat-

ing the two topologies, the proposed CRN can utilize both the ability to

learn features of CNNs and the ability to model transient dependencies of

RNNs.

Figure 1.2: CRN

• TCNN: Temporal Convolutional Neural Network for Real-time Speech En-

hancement in the Time Domain (Pandey & Wang, 2019) [24]:

11



CHAPTER 1. INTRODUCTION

The figure below demonstrates the architecture of the proposed TCNN.

The encoder, decoder, and TCM are the three main components of the

model. While the encoder and the decoder largely resemble their coun-

terparts in other works, the TCM comprises dilated causal convolutional

layers which only have one dimension.

Figure 1.3: TCNN

• Speech enhancement using progressive learning-based convolutional recur-

rent neural network (Li et al., 2020) [21]:

Figure 1 represents the pipeline of PL-CRNN. Instead of using just one

CRNN, the framework consists of multiple CRNNs with a modest size

compared to a typical CRNN, each of them serving as a subnet. The

explanation for using smaller CRNNs is that the model will compensate

for performance differences when a simpler network is used instead of a

network with more parameters.

12



CHAPTER 1. INTRODUCTION

Figure 1.4: PL-CRNN

• Real Time Speech Enhancement in the Waveform Domain (Defossez et

al., 2020) [26]:

The framework of DEMUCS is quite similar to other CRNNs. More

specifically, it has the LSTM serving as the bottleneck between convo-

lutional encoder and decoder. The novel element of this work is it uses

raw waveform as the input to the model rather than spectrogram.

13



CHAPTER 1. INTRODUCTION

Figure 1.5: DEMUCS

From simple models [1,2], many complicated networks have been proposed over

a decade and proved their efficiency. However, as aforementioned, the data

these works use are quite limited. Hence, the main contribution of this work is

a new robust dataset with a wide range of voice and noise which were carefully

chosen and processed. The consequence of using large datasets is a remarkably

long time of training, but it proved that it is worth the effort.

1.4 Contribution

In this thesis we propose a robust dataset designed for speech enhancement,

using a popular, common structure of neural networks. We create the dataset

by taking one of the largest and most diverse contemporary dataset for peo-

ple voice - Librispeech as a clean voice source, merge noise datasets together

(namely ESC-50 and UrbanSound) to create a big set of noises. Then we blend

the clean voice with noise at different signal-to-noise ratios (SNRs), which re-

turns noisy voice records. We use an end-to-end system with the model taking

14
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noisy voice as input and noise as output, then obtain the clean voice by sub-

tracting the noise from the noisy voice.
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Chapter 2

Data collecting and preprocessing

2.1 Data collecting

It is reasonable that recording noisy speech and clean speech independently

(with the condition that the speeches in the noisy records match the clean

records exactly) is uneconomical and extremely time-consuming. Therefore, until

now, following the common pattern of collecting and preprocessing data, which

means to get clean voice data and noise data separately, then blend them, is

still the most realistic and versatile methodology.

Here are the clean speech datasets we use for experiments, all of which are

taken from LibriSpeech [30]. After preprocessing (blended with noise), dev-

clean would be treated as validation (development) set, test-clean as test set,

and train-clean-100 as the training sets:

Table 2.1: Clean voice data

subset hours per-spkr
minutes

female
spkrs

male
spkrs

total
spkrs

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40

train-clean-100 100.6 25 125 126 251

The dev-clean and test-clean datasets are carefully examined and refined by the

authors of LibriSpeech so that they have similar data distribution. Thus, using
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the dev-clean as the evaluation set while training the model assures the anal-

ogous performance on the test-clean dataset as the testing set. This helps us

investigate the working of the DNNs more conveniently and accurately. Com-

pared to other works which choose the testing set as a part of a big training

set and have no genuine evaluation set [21–23], it is a huge improvement in

model evaluation.

Table 2.1 also shows the big difference in size between the proposed dataset

and other familiar ones. The total duration of records in this dataset is over

110 hours, while the numbers of RSR2015 [31], TIMIT [32], and WSJ0 [33],

are 71, 52, and 43 respectively.

The noise dataset is formed by two parts: one for mixing with the training

set, and one for blending with the validation and testing set. The former is

the entire ESC-50 [34], with approximately 2.5 hours of noise, and contains 50

different classes. Table 2.2 reveals the diversity of the dataset. The noises vary

from environmental to domestic sounds, from artificial to natural sounds, and

from low, smooth to loud, fierce sounds.

Table 2.2: Classes in noise dataset

Animals
Natural sound-
scapes and wa-
ter sounds

Human, non-
speech sounds

Interior/ domes-
tic sounds

Exterior/ urban
noises

Dog Rain Crying baby Door knock Helicopter
Rooster Sea waves Sneezing Mouse click Chainsaw

Pig Crackling fire Clapping
Keyboard
typing

Siren

Cow Crickets Breathing
Door, wood
creaks

Car horn

Frog Chirping birds Coughing Can opening Engine

Cat Water drops Footsteps
Washing ma-
chine

Train

Hen Wind Laughing Vacuum cleaner Church bells
Insects (flying) Pouring water Brushing teeth Clock alarm Airplane
Sheep Toilet flush Snoring Clock tick Fireworks

Crow Thunderstorm
Drinking,
sipping

Glass breaking Hand saw

17
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The latter is taken from fold 1 of the UrbanSound dataset [35] (this dataset is

divided into 10 folds), which contains 10 different types of noises: air condi-

tioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,

jackhammer, siren, and street music. The duration of this part is nearly equal

to the former.

2.2 Data preprocessing

Speech records are first concatenated into a long vector. The short samples

are taken by continuing shifting the cutting point forward a particular number

of frames (hop-length-frame) to obtain the noise-only signal with a fixed frame

length, which are subsequently mixed with a randomly chosen short sample of

noise. Then each sample of clean voice is blended with a random sample of

noise with the formula:

x = s+α×n (2.1)

where x is the noisy voice, s is the speech, n is the noise, and alpha is a

number that is calculated from a variable call SNR dB (signal to noise ratio

(SNR), measured in decibels (dB)) with the formula:

α = 10SNR dB/10 (2.2)

To measure the efficiency of the system on different levels of noise, we exam-

ine it with different levels of SNR, from -10dB (loudest noise) to 15dB (lowest

noise), which means the α is chosen from a set of fixed values.

The short samples of noise are equal in length to those of speech and are ob-

tained with similar techniques. After blending the utterances with noise, a com-

plete dataset of noisy-clean pairs of short samples is created. Then we trans-

form them to spectra in the time-frequency domain using Short-time Fourier

18
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Transform (STFT). Eventually, the data are rescaled and shaped to serve as the

input to our model.

19



CHAPTER 3. METHODOLOGY

Chapter 3

Methodology

3.1 Problem formulation

The objective of the system is to reconstruct the target clean speech signal st

from an input signal xt , which is contaminated by noise nt :

xt = st +nt (3.1)

where xt , st , nt are time-domain waveforms with t as the time index. In STFT

domain, this formula equals to:

Xω,τ = Sω,τ +Nω,τ (3.2)

where Xω,τ , Sω,τ , Nω,τ , are the spectrograms of the noisy speech, clean speech,

and noise, respectively, generated by STFT. ω denotes the frequency bin, and

τ denotes the time frame.

Figure 3.1 clearly demonstrates the entire process.

20



CHAPTER 3. METHODOLOGY

Figure 3.1: System pipeline

About the output of the model, there are two directions that researchers nor-

mally follow: predict the clean speech spectra Ŝω,τ directly [22], or predict the

mask Gω,τ in time-frequency domain and recover the clean speech by calcu-

lating the element-wise multiplication of G and X [14, 25]. In this work, we

apply the former, but choose to predict the noise spectra N̂ω,τ rather than Ŝω,τ ,

as the noise tends to occupy a lesser amount in an audio record, making the

work of predicting itself tend to be easier. The estimated noise spectra is used

to obtain the clean speech spectra by the subtraction:

Ŝω,τ = Xω,τ − N̂ω,τ (3.3)
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Eventually the clean speech spectra is scaled and converted back to time-domain

waveforms. The ultimate product of the system is the predicted clean speech ŝt .

3.2 Model

The proposed deep CNNs, called Unet, is a Convolutional Encoder-Decoder

(CED) architecture, which is characterized by symmetric skip concatenation be-

tween the Encoder and Decoder. In the beginning, this architecture was used in

Bio-Medical Image Segmentation [36].

Figure 3.2: Pipeline of the Unet

Figure 3.2 and Table 3.1 show the framework of the Unet. The Encoder com-

prises repetitious chains of a convolution, batch normalization, max-pooling, and

a RELU activation layer. It compresses the features through its length. Com-

pared to the Encoder, the Decoder has an opposite pipeline consisting of the

upsampling layers rather than max-pooling ones, and an opposite task of de-

compressing the features. Together, they form a pair of contracting - expansive
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paths.

In the Encoder (contracting path), after each pair of 3x3 unpadded convolutions

is a rectified linear unit (ReLU) followed by a max-pooling layer with the ker-

nel size of 2x2 and stride 2. After this downsampling operation, the feature

channels are doubled in their number. The Decoder (expansive path) consists of

repeated application of an upsampling step, a 2x2 ”up-convolution” where the

number of feature channels is halved, a skip-connection, and two 3x3 unpadded

convolutions that each is followed by a RELU. The skip-connections copy and

crop the feature map from the encoder to the corresponding layers in the de-

coder in order to retain valuable information which may be lost alongside the

encoder. A 1x1 convolutional layer with the Hyperbolic tangent activation (tanh)

is placed at the end of the model to retrieve the desired noise spectra in the

scale of [-1, 1]. Overall, the whole pipeline of Unet has a total of 23 convo-

lutional layers.

23
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Table 3.1: Architecture of the Unet.

(For clarity and simplicity, we omit the ReLU, maxpooling and upsampling
layers)

layer name output shape hyperparameters connected to
input 1 (None, 128, 128, 1)
conv2d (None, 128, 128, 16) 160 input 1

conv2d 1 (None, 128, 128, 16) 2320 conv 2d
conv2d 2 (None, 64, 64, 32) 4640 conv2d 1
conv2d 3 (None, 64, 64, 32) 9248 conv2d 2
conv2d 4 (None, 32, 32, 64) 18496 conv2d 3
conv2d 5 (None, 32, 32, 64) 36928 conv2d 4
conv2d 6 (None, 16, 16, 128) 73856 conv2d 5
conv2d 7 (None, 16, 16, 128) 147584 conv2d 6
conv2d 8 (None, 8, 8, 256) 295168 conv2d 7
conv2d 9 (None, 8, 8, 256) 590080 conv2d 7

conv2d 10 (None, 16, 16, 128) 131200 conv2d 9
concatenate (None, 16, 16, 256) conv2d 7, conv2d 10
conv2d 11 (None, 16, 16, 128) 295040 concatenate
conv2d 12 (None, 16, 16, 128) 147584 conv2d 11
conv2d 13 (None, 32, 32, 64) 32832 conv2d 12

concatenate 1 (None, 32, 32, 128) conv2d 5, conv2d 13
conv2d 14 (None, 32, 32, 64) 73792 concatenate 1
conv2d 15 (None, 32, 32, 64) 36928 conv2d 14
conv2d 16 (None, 64, 64, 32) 8224 conv2d 15

concatenate 2 (None, 64, 64, 64) conv2d 3, conv2d 16
conv2d 17 (None, 64, 64, 32) 18464 concatenate 2
conv2d 18 (None, 64, 64, 32) 9248 conv2d 17
conv2d 19 (None, 128, 128, 16) 2064 conv2d 18

concatenate 3 (None, 128, 128, 32) conv2d 1, conv2d 19
conv2d 20 (None, 128, 128, 16) 4624 concatenate 3
conv2d 21 (None, 128, 128, 16) 2320 conv2d 20
conv2d 22 (None, 128, 128, 2) 290 conv2d 21
conv2d 23 (None, 128, 128, 1) 3 conv2d 22

total parameters 1,941,093
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3.3 Objective function

Given a segment of noisy spectra X and clean spectra S, the objective is to di-

rectly estimate the noise spectra N̂ that approximates the observed noise spectra

N. We use the Huber loss [37] as a compromise between L1 and L2 loss to

evaluate:

Lδ (N̂,N) =


1
2(N̂−N)2 for |N̂−N| ≤ δ ,

δ |N̂−N|− 1
2δ 2 otherwise

(3.4)

with

N = X−S (3.5)

where N̂ and N denote predicted noise and evaluation noise spectra respectively,

and δ = 1.
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Chapter 4

Experiments

In order to examine the effectiveness of the proposed method, the performance

of speech enhancement was investigated by training and evaluating the model

on 6 different datasets, all of them use the same clean voice dataset and noise

dataset, but each blend the two datasets at its own SNR level. Finally, we

compared the evaluation results between unprocessed noisy speeches and de-

noised speeches.

4.1 Datasets

With each level of SNR, the total duration of audio samples is over 100 hours

with the training set, and over 5 hours with the validation set and the testing

set. All the audio data are sampled at 8kHz, or 8000 frames in 1 second, and

are broken into short samples with a duration of slightly above 1 second (8064

frames). In more detail, after preprocessing, there are 344909 short samples for

training, 17872 for validation, and 17980 for testing. About the noise datasets,

the combination of ESC-50 and UrbanSound is 5 hours in length. The noises

from ESC-50 are used for training, while the rest are used for validation and

testing, which means the task of the model is to predict unseen noises to the
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best extent possible.

4.2 Experiment settings

All the experiments are performed on the environment of Google Colab and

Tensorflow, using the hardware of GPU NVIDIA Tesla K80. The audio data

is converted to spectra by using the Short-time Fourier Transform (STFT) with

256 points Hann window and 64 points window shift. We set the batch size to

64 and set the learning rate to 0.001. We train the model with 10 epochs with

the Adam optimizer [38].

4.3 Evaluation

To assess the quality of model predictions, we use two evaluation metrics:

STOI (Short-Time Objective Intelligibility) [39] and PESQ (Perceptual Evalua-

tion of Speech Quality) [40]. While Table 4.1 and 4.2 present STOI and PESQ

scores, respectively, of unprocessed and processed signals, Figure 4.1 describes

the before-after improvements in both the evaluation scores on each level of

SNR:

Table 4.1: STOI measure results

Evaluation metrics STOI(%)
SNR -10 -5 0 5 10 15 Avg.

unprocessed 61 72.5 79.3 87.7 91.6 94.6 81.1
train-clean-100 73.8 83.1 87.8 91.8 94.7 96.2 87.9
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Table 4.2: PESQ measure results

Evaluation metrics PESQ
SNR -10 -5 0 5 10 15 Avg.

unprocessed 1.68 2.07 2.32 2.72 2.96 3.22 2.50
train-clean-100 2.27 2.68 2.91 3.22 3.35 3.69 3.02

Figure 4.1: Improvements in Evaluation Scores

It is evident that the improvements peak at the case of loudest noises (lowest

SNR) and slowly decrease when the noises get fainter. In the most challenging

condition, where the utterances are blended with the noise at the SNR level of

-10 dB, compared to the unprocessed speech, the processed speech has a gain

of 21,0% and 35,1% in STOI score and PESQ score respectively. Meanwhile,

the improvements in the case of SNR level of 15 dB are insignificant, with

only 1,7% for STOI score and 14,6% for PESQ score.

4.4 Results
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(a) SNR=-5 dB (b) SNR=10 dB

Figure 4.2: Spectrograms with different levels of SNR

Looking at Figure 4.2 and Figure 4.3, it can be easily observed that the model

tends to over-suppress the background noises if the noises are too loud, while

the noises that happen concurrently with the speech are not removed radically.
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(a) SNR=-5 dB

(b) SNR=10 dB

Figure 4.3: Waveforms with different levels of SNR
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we aimed to find a memory-efficient speech denoising method

that can be implemented in an embedded system. Inspired by the precedented

success of the Convolutional Encoder-Decoder, we hypothesized that this model

architecture can more effectively work in real-life applications simply by pro-

viding it more data. We set up an experiment to denoise human speech from

babble noise which is a major discomfort to people in modern worlds, espe-

cially ones using hearing aids, making film or videos, doing phone calls, listen-

ing to music, or using speech recognition. In the end, we observed that with

the significantly large training set, the model can recover the targeted speech

with high accuracy.

5.2 Future Works

There are still various unsatisfying points in this work. The training time is

rather long, with 45 minutes to 1 hour to train 1 epoch of the entire train-
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clean-100. This is partly because the model is still large, with nearly 2 mil-

lion trainable parameters. Secondly, our conditions do not allow us to train the

model with more data, especially with the clean speech corpus of LibriSpeech

train-clean-360, which contains up to over 360 hours of audio, with the num-

ber of speakers is 921. This is a huge obstacle that prevents the model from

additional performance gains. In addition, the objective function of Huber loss

seems to be somewhat incompetent in this task.

With the aforementioned shortcomings, there are multiple directions for us to

improve the system further. To reduce the size of the model, we can remove

some CNN layers. To raise the performance of the model, we can add some

LSTMs in the middle between the encoder and decoder. Besides, the present

amount of data is already acceptable, however, we can enrich the data by ap-

plying some augmentation steps with both the speech and noise dataset. In the

future, with these problems being solved, this model would become more reli-

able to be used in real-time speech enhancement.
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and Mark Hasegawa-Johnson. Speech enhancement using bayesian wavenet.

In Interspeech, pages 2013–2017, 2017.

[4] Pavan Karjol, M Ajay Kumar, and Prasanta Kumar Ghosh. Speech en-

hancement using multiple deep neural networks. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5049–

5052. IEEE, 2018.

[5] Jean-Marc Valin. A hybrid dsp/deep learning approach to real-time full-

band speech enhancement. In 2018 IEEE 20th international workshop on mul-

timedia signal processing (MMSP), pages 1–5. IEEE, 2018.

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2):157–166, 1994.

33



REFERENCES

[7] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution re-

current neural networks. In International Conference on Machine Learning,

pages 1120–1128. PMLR, 2016.

[8] Scott Wisdom, Thomas Powers, John R Hershey, Jonathan Le Roux, and

Les Atlas. Full-capacity unitary recurrent neural networks. arXiv preprint

arXiv:1611.00035, 2016.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[10] Hakan Erdogan, John R Hershey, Shinji Watanabe, and Jonathan Le Roux.

Phase-sensitive and recognition-boosted speech separation using deep recur-

rent neural networks. In 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 708–712. IEEE, 2015.

[11] Han Zhao, Shuayb Zarar, Ivan Tashev, and Chin-Hui Lee. Convolutional-

recurrent neural networks for speech enhancement. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2401–2405. IEEE, 2018.

[12] Naijun Zheng and Xiao-Lei Zhang. Phase-aware speech enhancement based

on deep neural networks. IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 27(1):63–76, 2018.

[13] Yuma Koizumi, Kohei Yaiabe, Marc Delcroix, Yoshiki Maxuxama, and

Daiki Takeuchi. Speech enhancement using self-adaptation and multi-head

self-attention. In ICASSP 2020-2020 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 181–185. IEEE, 2020.

[14] Daiki Takeuchi, Kohei Yatabe, Yuma Koizumi, Yasuhiro Oikawa, and

Noboru Harada. Real-time speech enhancement using equilibriated rnn. In

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 851–855. IEEE, 2020.

34



REFERENCES

[15] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Ger-

ald Penn, and Dong Yu. Convolutional neural networks for speech recog-

nition. IEEE/ACM Transactions on audio, speech, and language processing,

22(10):1533–1545, 2014.

[16] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang

Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang

Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recogni-

tion in english and mandarin. In International conference on machine learn-

ing, pages 173–182. PMLR, 2016.

[17] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image denoising us-

ing very deep fully convolutional encoder-decoder networks with symmetric

skip connections. arXiv preprint arXiv:1603.09056, 2, 2016.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[19] Kun Han, Yuxuan Wang, and DeLiang Wang. Learning spectral mapping

for speech dereverberation. In 2014 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 4628–4632. IEEE, 2014.

[20] Ke Tan and DeLiang Wang. A convolutional recurrent neural network for

real-time speech enhancement. In Interspeech, pages 3229–3233, 2018.

[21] Andong Li, Minmin Yuan, Chengshi Zheng, and Xiaodong Li. Speech

enhancement using progressive learning-based convolutional recurrent neural

network. Applied Acoustics, 166:107347, 2020.

[22] Se Rim Park and Jinwon Lee. A fully convolutional neural network for

speech enhancement. arXiv preprint arXiv:1609.07132, 2016.

[23] Tomas Kounovsky and Jiri Malek. Single channel speech enhancement us-

ing convolutional neural network. In 2017 IEEE International Workshop of

35



REFERENCES

Electronics, Control, Measurement, Signals and their Application to Mechatron-

ics (ECMSM), pages 1–5. IEEE, 2017.

[24] Ashutosh Pandey and DeLiang Wang. Tcnn: Temporal convolutional neural

network for real-time speech enhancement in the time domain. In ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 6875–6879. IEEE, 2019.

[25] Yangyang Xia, Sebastian Braun, Chandan KA Reddy, Harishchandra

Dubey, Ross Cutler, and Ivan Tashev. Weighted speech distortion losses

for neural-network-based real-time speech enhancement. In ICASSP 2020-

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 871–875. IEEE, 2020.

[26] Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. Real time speech

enhancement in the waveform domain. arXiv preprint arXiv:2006.12847,

2020.

[27] Yan Zhao, Buye Xu, Ritwik Giri, and Tao Zhang. Perceptually guided

speech enhancement using deep neural networks. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

5074–5078. IEEE, 2018.

[28] Babafemi O Odelowo and David V Anderson. A study of training targets

for deep neural network-based speech enhancement using noise prediction.

In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 5409–5413. IEEE, 2018.

[29] Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Monaural speech en-

hancement using deep neural networks by maximizing a short-time objec-

tive intelligibility measure. In 2018 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 5059–5063. IEEE, 2018.

[30] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.

Librispeech: an asr corpus based on public domain audio books. In

36



REFERENCES

2015 IEEE international conference on acoustics, speech and signal processing

(ICASSP), pages 5206–5210. IEEE, 2015.

[31] Anthony Larcher, Kong Aik Lee, Bin Ma, and Haizhou Li. Rsr2015:

Database for text-dependent speaker verification using multiple pass-

phrases. In Thirteenth Annual Conference of the International Speech Com-

munication Association, 2012.

[32] John S Garofolo. Timit acoustic phonetic continuous speech corpus. Lin-

guistic Data Consortium, 1993, 1993.

[33] John Garofolo, David Graff, Doug Paul, and David Pallett. Csr-i (wsj0)

complete ldc93s6a. Web Download. Philadelphia: Linguistic Data Consortium,

83, 1993.

[34] Karol J Piczak. Esc: Dataset for environmental sound classification. In

Proceedings of the 23rd ACM international conference on Multimedia, pages

1015–1018, 2015.

[35] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and

taxonomy for urban sound research. In Proceedings of the 22nd ACM inter-

national conference on Multimedia, pages 1041–1044, 2014.

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on

Medical image computing and computer-assisted intervention, pages 234–241.

Springer, 2015.

[37] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs

in statistics, pages 492–518. Springer, 1992.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[39] Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hek-

stra. Perceptual evaluation of speech quality (pesq)-a new method for

37



REFERENCES

speech quality assessment of telephone networks and codecs. In 2001 IEEE

International Conference on Acoustics, Speech, and Signal Processing. Proceed-

ings (Cat. No. 01CH37221), volume 2, pages 749–752. IEEE, 2001.

[40] Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen.

A short-time objective intelligibility measure for time-frequency weighted

noisy speech. In 2010 IEEE international conference on acoustics, speech and

signal processing, pages 4214–4217. IEEE, 2010.

38



APPENDIX A. SHORT-TIME FOURIER TRANSFORM

Appendix A

Short-time Fourier Transform

Forward continuous-time STFT

The fourier transform is calculated by the equation:

STFT{x(t)}(τ,ω)≡ X(τ,ω) =
∫

∞

−∞

x(t)w(t− τ)e−iωt dt (A.1)

where τ is the time index and ω is the frequency bin, while the window func-

tion and the signal to be transformed are denoted by w(τ) and x(t), respec-

tively.

Inverse continuous-time STFT

We have ∫
∞

−∞

w(τ)dτ = 1. (A.2)

It follows that ∫
∞

−∞

w(t− τ)dτ = 1 ∀ t (A.3)

and

x(t) = x(t)
∫

∞

−∞

w(t− τ)dτ

=
∫

∞

−∞

x(t)w(t− τ)dτ

(A.4)
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(A.1) equals to

X(ω) =
∫

∞

−∞

x(t)e− jωt dt. (A.5)

Substituting x(t) from (A.5):

X(ω) =
∫

∞

−∞

[∫
∞

−∞

x(t)w(t− τ)dτ

]
e− jωt dt

=
∫

∞

−∞

∫
∞

−∞

x(t)w(t− τ)e− jωt dτ dt.
(A.6)

Swapping order of integration:

X(ω) =
∫

∞

−∞

∫
∞

−∞

x(t)w(t− τ)e− jωt dt dτ

=
∫

∞

−∞

[∫
∞

−∞

x(t)w(t− τ)e− jωt dt
]

dτ

=
∫

∞

−∞

X(τ,ω)dτ.

(A.7)

From (A.7) we can the inverse Fourier transform:

x(t) =
1

2π

∫
∞

−∞

X(ω)e+ jωt dω, (A.8)

then X(τ,ω) can be used to restore x(t):

x(t) =
1

2π

∫
∞

−∞

∫
∞

−∞

X(τ,ω)e+ jωt dτ dω. (A.9)

or

x(t) =
∫

∞

−∞

[
1

2π

∫
∞

−∞

X(τ,ω)e+ jωt dω

]
dτ. (A.10)
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