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Abstract—This  paper  presents  a low-cost  and  high-
performance hardware  design  of  forward  transform  and  
quantization  (FTQ) for  an  H.264/AVC  encoder.  To  
minimize  the  hardware  imple-mentation cost, in this 
design we use only one unified architecture of 1D transform 
engine to perform all transform processes. While the  
performance  of  the  design  is  improved  by  using  a  fast 
architecture of the multiplier in the quantizer. 
Furthermore, this architecture  also  enables  to  share  the  
common  part  among multipliers that have the same 
multiplicand. The design has been implemented  using 
FPGA  technologies for  prototyping purpose. Experimental  
results  show  that  our  architecture  can  completely finish  
transform  and  quantization  processes  of  a  4:2:0  
macrob- lock  in  228  clock  cycles  and  the  achieved  
performance  is  115 MHz  on  a Virtex-II  device  (Xilinx)  
or  163  MHz  on  a Stratix-II device (Altera). 

Keywords:  Integer  Transform,  Quantization,  H.264/AVC 
Encoder 

I. INTRODUCTION  

The H.264/AVC is the newest and the most efficient 
video compression  standard with capability  of  
providing  a  good video  quality  at  lower bit-rate  than 
previous  standards. To achieve  high compression  ratio,  
H.264/AVC has  adopted several advances in coding 
technology.  By specifying a set of integer transforms  
for small  block-sizes,  which are  integer discrete  cosine  
transform  (DCT)  and  Hadamard transform,  it has 
really reduced  the  computational  complexity  as  
important as  blocking  artifacts [1].  Thanks  to  new  
algorithms,  these transforms can be easily realized with 
some required shift and add operations. 

The size of transforms is variable, depending on the 
profile used in the encoder, where  4×4 block-size and 
2×2 block-size transforms are primitive components. 
Larger transforms, which used in case of adaptive block-
size transforms (ABT), are more suitable for High-
Definition (HD) video. 

Previous  works  have  already  been successes  in 
hardware implementation of transform and quantization. 
Chih-Peng Fan and Yu-Lin Cheng  [2] proposed a design 

with a high through- put and low latency architecture 
using Canonical Signed Digit (CSD)  multiplier for 
shared  quantization/inverse-quantization. In  [3],  Yu-
Ting Kou  presented an area-efficient  architecture using 
direct 2D transform method. Whereas, in  [4] is proposed 
a  multi-transform  architecture  that  used  for  variable  
adaptive block-size  transforms.  Generally, these  works  
used two separate  1D  transforms  in cascading  to  carry  
out  a  2D  trans-form  or implemented  a direct  2D  
transform.  Obviously,  the advantage  of  these  methods  
is  that  we  can achieve  a  high throughput in transform.  
However, the  bottleneck  of  encoders  mostly  comes  
from  motion estimation  and/or entropy  coding modules 
rather than transform and quantization. Optimizing the 
design for throughput  is  therefore  less  important  than 
other objectives  such  as  performance  or  area,  
providing real-time processing. For this  reason,  to  
trade-off  between  throughput  and  area  cost,  we  
propose  an  architecture  of  transform  using only  one  
1D  transform  module.  With some  improvements  in  
control part, this architecture  is able  to  perform integer 
DCT- based transforms as well as Hadamard transforms. 
In addition, to  improve  the  system  performance and 
more area-efficiency,we  also  present  a  particular 
architecture  of  multiplier in the quantizer. In where, a 
shared module (called pre-multiplier) is used for 
multipliers have the same multiplicands 

The  remaining  part  of  this  paper is  organized  as  
follows: Section II briefly  recalls  some  background of 
transform  and quantization algorithms;  the  proposed  
architecture  for a forward transform  and quantization 
will  be  presented  in Section III.  Experimental  results  
will  be  presented in Section  IV.    Finally,  conclusions  
and discussions  will  be  given in Section V. 

II. FORWARD TRANSFORM AND QUANTIZATION 
ALGORITHMS 

In H.264/AVC  standard,  the  residual  frame  of the  
predic- tion,  which  is  the  difference  of  the  original  
frame  and  the predicted  frame,  is  partitioned into  
fixed-size  of macroblocks. As usually, a macroblock is 
composed of 16×16 luminance (Y) samples, 8×8  chroma  
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blue  (Cb)  samples  and  8×8  chroma  red (Cr) samples 
in case of 4:2:0 chroma subsampling format. At a smaller 
level,  macroblocks  are  subdivided  into  blocks  of  4×4 
samples for coding. Each macroblock has its own 
information on  quantization  parameter  (QP),  coded 
type  (Intra  mode  or Inter mode)  and  prediction mode.  
The  flow  of  transform  and quantization for those 
blocks is illustrated in .Figure 1. 

 
Figure 1. Transform and quantization flow diagram. 

According to  this  flow,  the  input  block X  is  first  
trans-formed  using  integer DCT-base  method.  The  
transformed coefficients  are  then  post-scaled  and  
quantized.  In the  16×16 Intra-prediction mode,  DC  
coefficients  of  all  transformed residual  blocks are  
grouped into an array  of  4×4  before to be sent  to  
Hadamard  transform.  Details  of  these  processes  are 
described in mathematical models later. 

A. 4×4 forward transforms 

 Integer DCT-based transform  

The integer DCT-based transform which applied to  a 
resi-dual 4×4 blocks (denoted by matrix X), is defined in 
H.264 as  

the following: 

 
Where: 

 

 Hadamard transform  

The Hadamard transform which applied to a 4×4 
luminance DC block  (denoted by  matrix WD)  in 16×16  
Intra-prediction mode, is defined as the following: 

 

Generally,  both integer DCT-based  transform  and  
Hada-mard  transform  are  formed  by  two  duplicated  
“cores”  of  1D transform,  where  the  “core”  is  a  
matrix  multiplication either “CT” or “HT”. The 2D 
transforms are carried out by applying the  core  to  the  
input  block;  the  immediate  results  are  rear-ranged by  
transposing operation and  re-applying the  core. 
Obviously, the specification of the matrixes C and H in 
which only coefficients of ±1 and/or ±2 are available, 
these transfor- mations are multiplier-less and purely 
require a few of add and logical shift operations. On the 
other hand, the dynamic range of  data  is  also  estimated 
to  reduce  the  overhead  in computa-tions. With 8-bit 
precision of the pixel data, the dynamic range of outcome 
of integer DCT-based transform is 16-bit. 

In here, we have already modified the matrix  H by 
scaling of  1/2 to  preserve  the  arithmetic  operations  of  
Hadamard transform  in 16-bit  precision as  of  integer 
DCT-based  trans- form. Then, in quantization of the DC 
block, the result will be rescaled  of  2.  By  this  way,  all  
4×4  forward  transforms  are completely handled in 16-
bit precision.  

Figure 2. shows a hybrid and fast 1D transform diagram 
for processing 4 samples. The diagram is in the shape of 
butterfly diagram and is used for two types of transform. 
There are some multiplexers  to  select  the  shift  factors  
(or scaled  factors)  in computations  of  each transform  
type.  This  diagram  is  great inspiration to design 
architecture for transform module. 

 
Figure 2. A hybrid 1D transform of integer DCT-based 
transform and Hadamard transform 

B.Quantization  

H.264/AVC standard defines a set of 52 values of 
quantiza- tion step  (Qstep).  These  values  are  indexed  
by QP  and  to  be determined in range of 0 to 51. As 
introduced above, the value of  quantization parameter is  
associated with any  maroblock (also blocks within a 
macroblock). Thanks to the wide range of QP, an 
encoder can be able to accurately and flexibly control the 
trade-off between bit-rate and quality . [9].. 

Basically, forward quantization is defined as follows: 
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To  avoid  division  operations,  this  equation  can  be 
represented in another way . [8].: 

 

Consequently, quantization can be computed as 
follows: 

 

Where qbits 15 floor(QP/6), MF a matrix of 
multipli-cation factors  (see.TABLE  I.) and  f  is  

additional  factor, f �2qbits/3 if  the  block is  coded in  

Intra  mode,  andf = 2qbits
/6 if the block is coded in Inter 

mode. 



 

Especially, quantization for a DC block is implemented 
as follows  (it has already  rescaled  by  2 due to  scaling  
by  1/2 in transform): 

 

Where  MF00 is the multiplication factor at position (0,0).  

The innovation of quantization in H.264/AVC is the 
defini-tion of  Qstep.  In  where,  Qstep  is non-uniform  
(or non-linear according to QP) and doubled in size if QP 
increases by 6. So, whenever QP is changed by the 
encoder, matrix of  MF factor is also changed as 
consequence, but it absolutely depends on the value of 
QP%6 (as shown inXX). Besides, it does not require a lot 
of memory elements to store MF factors, only 18 values 
for full range of QP.   

Similar  to  the  transform  part,  the  quantization  has  
also simplified to  obtain low-complexity  in a manner of  
avoiding division and floating point operations. 

III. PROPOSED ACHITECTURE 

In  this  section,  we  present  a  novel  architecture  for  
trans- form  and  quantization of  4×4  blocks.  While  the  
design of transform  is  only  intended  to  area-efficiency  
by  using 1D transform  module  for all  transformations  
of  4×4  block,  the design of  quantizer is  estimated  in 
order to  improve  on both performance  and  area  usage.  

This  design is  able  to  process  4 samples at a time. The 
details will be described as follows 

A. Transform module 

With the  proposing  use  one  1D  transform  module,  
the second 1D  transform  processes  could not  be  
started  until  the first  1D  transform  processes  had  
finished  on  entire  block. Therefore, it is necessary to 
have a memory buffer for storing and  transposing  the  
temporary  data. Figure  3  shows  the architecture  of  
forward  transform  module  with the  sample-width of 
the datapath.  

 
Figure 3. Architecture of forward transform. 

The architecture is simply composed of three main 
compo- nents: 1D transform module, Transpose RAM 
module and DC RAM module, and  other components  
such as multiplexer and de-multiplexer for arbitrating the 
dataflow. The input data and output data of the transform 
module are 4 samples, equivalent to 64-bit (4×16-bit). To 
have better view, some control signals have been hidden. 

The  activity  of  the  module  can be  easily  realized  
through the list of all states (corresponding to the 
dataflow): 

 

These states have length of 4 clock cycles. By controlling 
the sequence of these states, a general block will be 
executed in the order of two states  {state_1; state_2} 
while a DC block will be executed in the order of two 
states {state_3; state_2}. 

 1D transform  

The  1D  transform  module  is  the  hybrid  transform  as  
illu- strated  in .Figure  2.  All  multiplexers  in this  
module  are controlled by a selector signal which 
configures the activity of the module as integer DCT-
based transformation or Hadamard transformation. The 
responsibility of this module is one clock and  the  
throughput  therefore  is  4  samples/clock.  A  higher 
throughput  can be  easily  obtained  by  using  several  
1D  trans-forms in parallel.  

 Transpose RAM and DC RAM  

The  purpose  of  Transpose  RAM  as  the  meaning  of  
the name is to store and transpose data. DC RAM is used 
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to store luminance  DC  coefficients  of  a  transformed  
maroblock. Basically, Transpose RAM and DC RAM are 
matrices of 4×4 16-bit registers (as shown in .Figure 4.). 
The input and output of Transpose RAM are 4 samples 
width for read/write accessing a row/column data. 
Whereas the input of DC RAM is one sample width for 
writing one DC coefficient at a time and the output is 4 
samples width, like Transpose RAM’s. 

 

Figure 4. Transpose RAM (left) and DC RAM (right).  

The  writing  operations  of  Transpose  RAM  are  
enabled whenever valid  data  are  ready  at  the  output  
of  1D  transform module. These  occur in 4  continuous  
clock cycles  of  the  first 1D transform process. The 
reading operations occur in next 4 clock cycles to get out 
the column-wise data for the second 1D transform 
process. The registers in a row  of  Transpose  RAM are  
connected  in  series.  Thus,  the  data  which  stored in a 
register  will  be automatically  shifted  into the  back 
register in next  clock.  By  this  means,  Transpose  
RAM  will  be  filled  up new data in 4 clock cycles of 
the writing operations.  

DC  RAM  is  a  bit  different  from  Transpose  RAM  in 
their structures where the registers are independent with 
each other. This buffer is only useful and active in 16×16 
Intra prediction mode only. In that case, the DC 
coefficients of any transformed luminance  blocks  are  
extracted  and  written into  DC  RAM.  

Therefore, the writing operations of DC RAM only take 
place in one clock cycle at the time where the earliest 
data are valid. The reading operations are enabled in 4 
clock cycles when the last  block of  a  luminance  
macroblock is  completely  trans-formed.  Besides,  the  
read/write  address  signals  of  DC  RAM are directly 
controlled by FTQ Controller module. 

Compare  with the  architecture  of  cascading  two  
separate 1D  transform  modules X,  our architecture  is  
required  a  bit challenging  in designing  the  controller  
module  but  it  has absolutely  saved  the  hardware  
resource  by  the  total  cost  of  a 1D transform module.  

B.Quantizer module  

The quantizer can be easy realized from equations (7) 
and (8),  as  depicted  in .Figure 5.  It  consists  of  four  
quantization cores  and  some  common  parts:  
MF_ROM  module, DIVIDER_BY_6  module  and  

F_CALC module.  These common modules  are  shared 
to  the  4  quantization cores. Actually,  DIVIDER_BY_6  
module  is  possible  to  share  with de-quantizer module.  

 

Figure 5. Architecture of quantizer. 

DIVIDER_BY_6 module is a combinational block to 
calcu- late  the  value  of  QP%6  and floor  
(QP/6)  as  well.  In  some related  works,  it  was  
designed  as  common  look-up-tables  (LUTs),  such as 

X [2]X.  This  design may  take  lots  of  memory 
utilization due  to  we  have  up  to  52 values  of  QP.  
MF_ROM module is a  ROM block for storing 18 
constant values of  MF factors.  Accessing  to  a batch  of 
MF  factors  is  addressed  by QP%6  signal. F_CALC 
module  is  a  combinational  block to calculate the 
additional factor f based on the coded maroblock type  
(either Intra  mode  or  Inter mode)  and  the  block type 
(residual block or DC block).  

Regarding to the multiplier design, when the size of 
multip-liers are large (15-bit of qdat_i and 14-bit of MF), 
it can mostly impact to the performance of the quantizer 
as a result of large latency. For this reason,  we have  
deeply  estimated the  design of  multiplier,  which 
presented  in next  paragraph  to  minimize the latency. 

 A fast and highly shared multiplier  

The fast multiplier that we proposed is a conditional 
multip-lier. The idea is to build a basic element (called 
pre-multiplier) which is  multiplier of  MF  factor with all  
possible  3-bit numbers  (as  shown in.Figure  6),  where  
Aii.MF, 0  i  7. In fact, we do not need to carry out A0, 
A1, A2 and A4 on this module  when these  signals  can 

be  directly  driven from  MF signal. 

 

Figure 6. The pre-multiplier element. 

Then, the 15-bit multiplier using the pre-multiplier 
element is explored as .Figure 7.. Each group of 3-bit 
vector (so it has 5 groups) is multiplied with the 
multiplicand W by controlling a multiplexer to  select  
the  equivalent  result  from  the pre-multiplier element. 
There are some registers are inserted at the output of 
adders  to  cut  down the  combinational  paths  of  the 
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multiplier. By this way, we have already improved the 
perfor-mance of the multiplier. 

 

Figure 7. Multiplier for quantizer using the pre-
multiplier element. 

Obviously,  the  pre-multiplier can be  shared among  5 
groups  of  3-bit  multiplier.  Since  the  pre-multiplier 
takes  4 adder blocks, we have already saved (4×4 = 16) 
adder blocks. In  addition  from  the .TABLE  I.  of  MF  
factors, qdat_i[0]  and qdat_i[2]  have  the  same  MF  
factor,  qdat_i[1]  and qdat_i[3] are too. Therefore, the 
pre-multiplier is also  possible  to  share between two 
quantization multipliers which have the same MF 
factor. Totally,  our quantizer can be  saved  up  to 
2×(16×2+4)=72  adder blocks.  Certainly,  several  
multiplexers will  be  required  to  replace  these  adders  
but  the  hardware utilization is still reduced 
significantly.  

C.Pipeline operation 

To achieve better performance, the proposed architecture 
is controlled  to  operate  in pipeline  mode. Figure  8. 
shows  the timeline of whole coding process. 

 

Figure 8. Three states of pipeline operation. 

The pipeline has three states as identified by S_1, S_2 
and S_3. In where, S_1 (4 clock cycles): launching the 
first stage of 1D  transform  on  block B1 while  previous  
block B0 is  still quantizing  to  the  end.  S_2  (4  clock  
cycles):  launching  the  second stage  of  1D  transform  
while  start  quantizing  of  block B1.  S_3 (1  clock 
cycle):  prepare  loading  new  block B2  into transform 
module while block B1 is still quantizing, valid data at 
the  output  are ready.  Therefore,  it  normally  takes 12  
clock cycles to complete transform coding of a block. 

Summary, by the pipelined schedule, our design will 
take 9 clock cycles on average  to process a block 
and this is equiva-lent to 228 clock cycles to 
complete the transform and quanti-zation processes  
of  the  entire  4×4  blocks  within  a  4:2:0 
macroblock. 

IV. VERIFICATION AND IMPLEMETATION 

The  architecture  was  modeled  using  VHDL  language  
and simulated on Synopsys VCS tool to verify the 
functionality.   

To verify the design (before and after the 
implementation), we developed a simple simulation 
environment as described in .Figure 9. In this 
environment, we developed a software model of  FTQ  
architecture  on Matlab,  which is  used  for testing 
purpose only. The input data used in this simulation is a 
PGM (portable  graymap  format)  image. This  image  is  
provided  to both Matlab model and hardware model. 
Then, the outputs of the both hardware and Matlab 
models will be compared to each other by using the 
developed testbench.  

It was implemented on different FPGA technologies, 
Altera and Xilinx, for rapid prototyping purpose. The 
implementation results are shown on .TABLE  II. for 
both Xilinx XC2V1500-6 and Altera Stratix II devices. 

 

Figure 9. Verification model for the design. 

.TABLE III.  shows  the  comparison of  different  
designs  on two parameters: FGPA gate counts and 
performance. It is clear that  our architecture  has  better 
performance  than the  others  thanks to  the 
improvement  of  multipliers,  while the hardware 
implementation cost is less than the others. 

TABLE II. SYNTHESIS RESULTS 
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TABLE III. HARDWARE COMPARISON ON FPGA 
TECHNOLOGY 

 

V. CONCLUSION 

In  this  paper,  we  presented  a  low-cost  and high- 
performance  forward  transform  and  quantization 
hardware  implementation for an H.264/AVC  encoder.  
In addition to proving the design, implementation results 
on different FPGA technologies  were  intently  reported 
to  help designers  make decision when choosing  the  
technology. As  indicated  above, the design gets a higher 
performance when implemented using Altera  technology  
than using  Xilinx  technology.  It  is  able  to process  a  
4:2:0  macroblock in 228  clock cycles  at  a  high  
frequency  of 163MHz  (Altera  Stratix  II).  The  area  
overhead reported  in this  work is  also  smaller than 
previous  works, gained more than 10%. 
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