
The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010) 231

Low Cost and High Performance
Implementation of Forward Transform and

Quantization for an H.264/AVC Encoder

Van-Huan Tran, Ngoc-Mai Nguyen, Van-Mien Nguyen, and Xuan-Tu Tran

SIS Laboratory, The University of Engineering and Technology, Vietnam National University, Hanoi

114 Xuan Thuy road, Cau Giay, Hanoi 10000, Vietnam. Email: {huantv, main, miennv, tutx}@vnu.edu.vn

Abstract—This paper presents a low-cost and high-
performance hardware design of forward transform and
quantization (FTQ) for an H.264/AVC encoder. To
minimize the hardware imple-mentation cost, in this
design we use only one unified architecture of 1D transform
engine to perform all transform processes. While the
performance of the design is improved by using a fast
architecture of the multiplier in the quantizer.
Furthermore, this architecture also enables to share the
common part among multipliers that have the same
multiplicand. The design has been implemented using
FPGA technologies for prototyping purpose. Experimental
results show that our architecture can completely finish
transform and quantization processes of a 4:2:0
macrob- lock in 228 clock cycles and the achieved
performance is 115 MHz on a Virtex-II device (Xilinx)
or 163 MHz on a Stratix-II device (Altera).

Keywords: Integer Transform, Quantization, H.264/AVC
Encoder

I. INTRODUCTION

The H.264/AVC is the newest and the most efficient
video compression standard with capability of
providing a good video quality at lower bit-rate than
previous standards. To achieve high compression ratio,
H.264/AVC has adopted several advances in coding
technology. By specifying a set of integer transforms
for small block-sizes, which are integer discrete cosine
transform (DCT) and Hadamard transform, it has
really reduced the computational complexity as
important as blocking artifacts [1]. Thanks to new
algorithms, these transforms can be easily realized with
some required shift and add operations.

The size of transforms is variable, depending on the
profile used in the encoder, where 4×4 block-size and
2×2 block-size transforms are primitive components.
Larger transforms, which used in case of adaptive block-
size transforms (ABT), are more suitable for High-
Definition (HD) video.

Previous works have already been successes in
hardware implementation of transform and quantization.
Chih-Peng Fan and Yu-Lin Cheng [2] proposed a design

with a high through- put and low latency architecture
using Canonical Signed Digit (CSD) multiplier for
shared quantization/inverse-quantization. In [3], Yu-
Ting Kou presented an area-efficient architecture using
direct 2D transform method. Whereas, in [4] is proposed
a multi-transform architecture that used for variable
adaptive block-size transforms. Generally, these works
used two separate 1D transforms in cascading to carry
out a 2D trans-form or implemented a direct 2D
transform. Obviously, the advantage of these methods
is that we can achieve a high throughput in transform.
However, the bottleneck of encoders mostly comes
from motion estimation and/or entropy coding modules
rather than transform and quantization. Optimizing the
design for throughput is therefore less important than
other objectives such as performance or area,
providing real-time processing. For this reason, to
trade-off between throughput and area cost, we
propose an architecture of transform using only one
1D transform module. With some improvements in
control part, this architecture is able to perform integer
DCT- based transforms as well as Hadamard transforms.
In addition, to improve the system performance and
more area-efficiency,we also present a particular
architecture of multiplier in the quantizer. In where, a
shared module (called pre-multiplier) is used for
multipliers have the same multiplicands

The remaining part of this paper is organized as
follows: Section II briefly recalls some background of
transform and quantization algorithms; the proposed
architecture for a forward transform and quantization
will be presented in Section III. Experimental results
will be presented in Section IV. Finally, conclusions
and discussions will be given in Section V.

II. FORWARD TRANSFORM AND QUANTIZATION
ALGORITHMS

In H.264/AVC standard, the residual frame of the
predic- tion, which is the difference of the original
frame and the predicted frame, is partitioned into
fixed-size of macroblocks. As usually, a macroblock is
composed of 16×16 luminance (Y) samples, 8×8 chroma

mailto:tutx%7D@vnu.edu.vn

232 The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010)

blue (Cb) samples and 8×8 chroma red (Cr) samples
in case of 4:2:0 chroma subsampling format. At a smaller
level, macroblocks are subdivided into blocks of 4×4
samples for coding. Each macroblock has its own
information on quantization parameter (QP), coded
type (Intra mode or Inter mode) and prediction mode.
The flow of transform and quantization for those
blocks is illustrated in .Figure 1.

Figure 1. Transform and quantization flow diagram.

According to this flow, the input block X is first
trans-formed using integer DCT-base method. The
transformed coefficients are then post-scaled and
quantized. In the 16×16 Intra-prediction mode, DC
coefficients of all transformed residual blocks are
grouped into an array of 4×4 before to be sent to
Hadamard transform. Details of these processes are
described in mathematical models later.

A. 4×4 forward transforms

 Integer DCT-based transform

The integer DCT-based transform which applied to a
resi-dual 4×4 blocks (denoted by matrix X), is defined in
H.264 as

the following:

Where:

 Hadamard transform

The Hadamard transform which applied to a 4×4
luminance DC block (denoted by matrix WD) in 16×16
Intra-prediction mode, is defined as the following:

Generally, both integer DCT-based transform and
Hada-mard transform are formed by two duplicated
“cores” of 1D transform, where the “core” is a
matrix multiplication either “CT” or “HT”. The 2D
transforms are carried out by applying the core to the
input block; the immediate results are rear-ranged by
transposing operation and re-applying the core.
Obviously, the specification of the matrixes C and H in
which only coefficients of ±1 and/or ±2 are available,
these transfor- mations are multiplier-less and purely
require a few of add and logical shift operations. On the
other hand, the dynamic range of data is also estimated
to reduce the overhead in computa-tions. With 8-bit
precision of the pixel data, the dynamic range of outcome
of integer DCT-based transform is 16-bit.

In here, we have already modified the matrix H by
scaling of 1/2 to preserve the arithmetic operations of
Hadamard transform in 16-bit precision as of integer
DCT-based trans- form. Then, in quantization of the DC
block, the result will be rescaled of 2. By this way, all
4×4 forward transforms are completely handled in 16-
bit precision.

Figure 2. shows a hybrid and fast 1D transform diagram
for processing 4 samples. The diagram is in the shape of
butterfly diagram and is used for two types of transform.
There are some multiplexers to select the shift factors
(or scaled factors) in computations of each transform
type. This diagram is great inspiration to design
architecture for transform module.

Figure 2. A hybrid 1D transform of integer DCT-based
transform and Hadamard transform

B.Quantization

H.264/AVC standard defines a set of 52 values of
quantiza- tion step (Qstep). These values are indexed
by QP and to be determined in range of 0 to 51. As
introduced above, the value of quantization parameter is
associated with any maroblock (also blocks within a
macroblock). Thanks to the wide range of QP, an
encoder can be able to accurately and flexibly control the
trade-off between bit-rate and quality . [9]..

Basically, forward quantization is defined as follows:

The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010) 233

To avoid division operations, this equation can be
represented in another way . [8].:

Consequently, quantization can be computed as
follows:

Where qbits 15 floor(QP/6), MF a matrix of
multipli-cation factors (see.TABLE I.) and f is

additional factor, f �2qbits/3 if the block is coded in

Intra mode, andf = 2qbits
/6 if the block is coded in Inter

mode.

Especially, quantization for a DC block is implemented
as follows (it has already rescaled by 2 due to scaling
by 1/2 in transform):

Where MF00 is the multiplication factor at position (0,0).

The innovation of quantization in H.264/AVC is the
defini-tion of Qstep. In where, Qstep is non-uniform
(or non-linear according to QP) and doubled in size if QP
increases by 6. So, whenever QP is changed by the
encoder, matrix of MF factor is also changed as
consequence, but it absolutely depends on the value of
QP%6 (as shown inXX). Besides, it does not require a lot
of memory elements to store MF factors, only 18 values
for full range of QP.

Similar to the transform part, the quantization has
also simplified to obtain low-complexity in a manner of
avoiding division and floating point operations.

III. PROPOSED ACHITECTURE

In this section, we present a novel architecture for
trans- form and quantization of 4×4 blocks. While the
design of transform is only intended to area-efficiency
by using 1D transform module for all transformations
of 4×4 block, the design of quantizer is estimated in
order to improve on both performance and area usage.

This design is able to process 4 samples at a time. The
details will be described as follows

A. Transform module

With the proposing use one 1D transform module,
the second 1D transform processes could not be
started until the first 1D transform processes had
finished on entire block. Therefore, it is necessary to
have a memory buffer for storing and transposing the
temporary data. Figure 3 shows the architecture of
forward transform module with the sample-width of
the datapath.

Figure 3. Architecture of forward transform.

The architecture is simply composed of three main
compo- nents: 1D transform module, Transpose RAM
module and DC RAM module, and other components
such as multiplexer and de-multiplexer for arbitrating the
dataflow. The input data and output data of the transform
module are 4 samples, equivalent to 64-bit (4×16-bit). To
have better view, some control signals have been hidden.

The activity of the module can be easily realized
through the list of all states (corresponding to the
dataflow):

These states have length of 4 clock cycles. By controlling
the sequence of these states, a general block will be
executed in the order of two states {state_1; state_2}
while a DC block will be executed in the order of two
states {state_3; state_2}.

 1D transform

The 1D transform module is the hybrid transform as
illu- strated in .Figure 2. All multiplexers in this
module are controlled by a selector signal which
configures the activity of the module as integer DCT-
based transformation or Hadamard transformation. The
responsibility of this module is one clock and the
throughput therefore is 4 samples/clock. A higher
throughput can be easily obtained by using several
1D trans-forms in parallel.

 Transpose RAM and DC RAM

The purpose of Transpose RAM as the meaning of
the name is to store and transpose data. DC RAM is used

234 The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010)

to store luminance DC coefficients of a transformed
maroblock. Basically, Transpose RAM and DC RAM are
matrices of 4×4 16-bit registers (as shown in .Figure 4.).
The input and output of Transpose RAM are 4 samples
width for read/write accessing a row/column data.
Whereas the input of DC RAM is one sample width for
writing one DC coefficient at a time and the output is 4
samples width, like Transpose RAM’s.

Figure 4. Transpose RAM (left) and DC RAM (right).

The writing operations of Transpose RAM are
enabled whenever valid data are ready at the output
of 1D transform module. These occur in 4 continuous
clock cycles of the first 1D transform process. The
reading operations occur in next 4 clock cycles to get out
the column-wise data for the second 1D transform
process. The registers in a row of Transpose RAM are
connected in series. Thus, the data which stored in a
register will be automatically shifted into the back
register in next clock. By this means, Transpose
RAM will be filled up new data in 4 clock cycles of
the writing operations.

DC RAM is a bit different from Transpose RAM in
their structures where the registers are independent with
each other. This buffer is only useful and active in 16×16
Intra prediction mode only. In that case, the DC
coefficients of any transformed luminance blocks are
extracted and written into DC RAM.

Therefore, the writing operations of DC RAM only take
place in one clock cycle at the time where the earliest
data are valid. The reading operations are enabled in 4
clock cycles when the last block of a luminance
macroblock is completely trans-formed. Besides, the
read/write address signals of DC RAM are directly
controlled by FTQ Controller module.

Compare with the architecture of cascading two
separate 1D transform modules X, our architecture is
required a bit challenging in designing the controller
module but it has absolutely saved the hardware
resource by the total cost of a 1D transform module.

B.Quantizer module

The quantizer can be easy realized from equations (7)
and (8), as depicted in .Figure 5. It consists of four
quantization cores and some common parts:
MF_ROM module, DIVIDER_BY_6 module and

F_CALC module. These common modules are shared
to the 4 quantization cores. Actually, DIVIDER_BY_6
module is possible to share with de-quantizer module.

Figure 5. Architecture of quantizer.

DIVIDER_BY_6 module is a combinational block to
calcu- late the value of QP%6 and floor
(QP/6) as well. In some related works, it was
designed as common look-up-tables (LUTs), such as

X [2]X. This design may take lots of memory
utilization due to we have up to 52 values of QP.
MF_ROM module is a ROM block for storing 18
constant values of MF factors. Accessing to a batch of
MF factors is addressed by QP%6 signal. F_CALC
module is a combinational block to calculate the
additional factor f based on the coded maroblock type
(either Intra mode or Inter mode) and the block type
(residual block or DC block).

Regarding to the multiplier design, when the size of
multip-liers are large (15-bit of qdat_i and 14-bit of MF),
it can mostly impact to the performance of the quantizer
as a result of large latency. For this reason, we have
deeply estimated the design of multiplier, which
presented in next paragraph to minimize the latency.

 A fast and highly shared multiplier

The fast multiplier that we proposed is a conditional
multip-lier. The idea is to build a basic element (called
pre-multiplier) which is multiplier of MF factor with all
possible 3-bit numbers (as shown in.Figure 6), where
Aii.MF, 0 i 7. In fact, we do not need to carry out A0,
A1, A2 and A4 on this module when these signals can

be directly driven from MF signal.

Figure 6. The pre-multiplier element.

Then, the 15-bit multiplier using the pre-multiplier
element is explored as .Figure 7.. Each group of 3-bit
vector (so it has 5 groups) is multiplied with the
multiplicand W by controlling a multiplexer to select
the equivalent result from the pre-multiplier element.
There are some registers are inserted at the output of
adders to cut down the combinational paths of the

The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010) 235

multiplier. By this way, we have already improved the
perfor-mance of the multiplier.

Figure 7. Multiplier for quantizer using the pre-
multiplier element.

Obviously, the pre-multiplier can be shared among 5
groups of 3-bit multiplier. Since the pre-multiplier
takes 4 adder blocks, we have already saved (4×4 = 16)
adder blocks. In addition from the .TABLE I. of MF
factors, qdat_i[0] and qdat_i[2] have the same MF
factor, qdat_i[1] and qdat_i[3] are too. Therefore, the
pre-multiplier is also possible to share between two
quantization multipliers which have the same MF
factor. Totally, our quantizer can be saved up to
2×(16×2+4)=72 adder blocks. Certainly, several
multiplexers will be required to replace these adders
but the hardware utilization is still reduced
significantly.

C.Pipeline operation

To achieve better performance, the proposed architecture
is controlled to operate in pipeline mode. Figure 8.
shows the timeline of whole coding process.

Figure 8. Three states of pipeline operation.

The pipeline has three states as identified by S_1, S_2
and S_3. In where, S_1 (4 clock cycles): launching the
first stage of 1D transform on block B1 while previous
block B0 is still quantizing to the end. S_2 (4 clock
cycles): launching the second stage of 1D transform
while start quantizing of block B1. S_3 (1 clock
cycle): prepare loading new block B2 into transform
module while block B1 is still quantizing, valid data at
the output are ready. Therefore, it normally takes 12
clock cycles to complete transform coding of a block.

Summary, by the pipelined schedule, our design will
take 9 clock cycles on average to process a block
and this is equiva-lent to 228 clock cycles to
complete the transform and quanti-zation processes
of the entire 4×4 blocks within a 4:2:0
macroblock.

IV. VERIFICATION AND IMPLEMETATION

The architecture was modeled using VHDL language
and simulated on Synopsys VCS tool to verify the
functionality.

To verify the design (before and after the
implementation), we developed a simple simulation
environment as described in .Figure 9. In this
environment, we developed a software model of FTQ
architecture on Matlab, which is used for testing
purpose only. The input data used in this simulation is a
PGM (portable graymap format) image. This image is
provided to both Matlab model and hardware model.
Then, the outputs of the both hardware and Matlab
models will be compared to each other by using the
developed testbench.

It was implemented on different FPGA technologies,
Altera and Xilinx, for rapid prototyping purpose. The
implementation results are shown on .TABLE II. for
both Xilinx XC2V1500-6 and Altera Stratix II devices.

Figure 9. Verification model for the design.

.TABLE III. shows the comparison of different
designs on two parameters: FGPA gate counts and
performance. It is clear that our architecture has better
performance than the others thanks to the
improvement of multipliers, while the hardware
implementation cost is less than the others.

TABLE II. SYNTHESIS RESULTS

236 The First Solid-State Systems Symposium – VLSIs & Related Technologies (4S-2010)

TABLE III. HARDWARE COMPARISON ON FPGA
TECHNOLOGY

V. CONCLUSION

In this paper, we presented a low-cost and high-
performance forward transform and quantization
hardware implementation for an H.264/AVC encoder.
In addition to proving the design, implementation results
on different FPGA technologies were intently reported
to help designers make decision when choosing the
technology. As indicated above, the design gets a higher
performance when implemented using Altera technology
than using Xilinx technology. It is able to process a
4:2:0 macroblock in 228 clock cycles at a high
frequency of 163MHz (Altera Stratix II). The area
overhead reported in this work is also smaller than
previous works, gained more than 10%.

VI. CKNOWLEDGMENT

This work is supported by Vietnam National
University, Hanoi (VNU) through research projects,
PUF.08.06 and VENGME. The authors would like to
thank Synopsys’ experts for their technical supports in
order to invest and deploy this design to a real ASIC
implementation.

VII. REFERENCES

[1] Detlev Marpe, Thomas Wiegand, and Gary J.
Sullivan, “The H.264/MPEG4 Advanced Video Coding
Standard and its Applications”, IEEE Communications
Magazine, pp. 134–143, August 2006.

[2] Chil-Peng Fan and Yu-Lin Cheng, “FPGA
Implementations of Low Latency and High Throughput
4x4 Block Texture Coding Processor for H.264/AVC”,
Journal of the Chinese Institute of Engineers, Vol.
32, No. 1, pp. 33–44, 2009.

[3] Yu-Ting Kuo, Tay-Jyi Lin, Chih-Wei Liu, and
Chein-Wei Jen, “Architecture for Area-Efficient 2-D
Transform in H.264/AVC”, in Proc. of the 2005 IEEE
Int’l Conf. on Multimedia and Expo, July 2005.

[4] Javier D. Bruguera and Roberto R. Osorio, “A
Unified Architecture for H.264 Multiple Block-Size DCT

with Fast and Low”, in Proc. of the 9
th

 EUROMICRO
Conf. on Digital System Design (DSD), August 2006.

[5] Tu-Chih Wung, Yu- Wen Huang, Hung-Chi Fang,
and Liang-Gee Chen, “Parallel 4x4 2D Transform and
Inverse Transform Architecture for MPEG-4
AVC/H.264”, in Proc. of the 2003 Int’l Symposium on
Circuits and Systems (ISCAS), pp. 800–803, May 2003.

[6] G. Pastuszak, “Transforms and Quantization in
the High-Throughput H.264/AVC Encoder Based on
Advanced Mode Selection”, in Proc. of IEEE CS
Annual Symposium on VLSI, pp. 203–208, April 2008.

[7] R. C. Kordasiewicz and S. Shirani, “ASIC and
FPGA Implementations of H.264 DCT and Quantization
Blocks,” in Proc. of the 2005 IEEE Int’l Conf. on Image
Processing (ICIP), pp. III-1020-3, September 2005.

[8] H.S. Malvar, A. Hallapuro, M. Karczewicz,
and L. Kerofsky, “Low-Complexity Transform and
Quantization in H.264/AVC”, IEEE Trans. on
Circuits and Systems for Video Technology, pp. 598–
603, 2003.

[9] I.E.G. Richardson, “H.264/MPEG-4 Part 10:
Transform & Quantization”, VCodex Ltd White Paper,
March 2003.

