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In this article, we consider a class of stochastic Volterra integro-differential equations with
infinite delay and impulsive effects, driven by fractional Brownian motion with the Hurst
index H > 1/2 in a Hilbert space. The cases of Lipschitz and bounded impulses are
studied separately. The existence and uniqueness of mild solutions are proved by using
different fixed-point theorems. An example is given to illustrate the theory.
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1. Introduction

The fractional Brownian motion (fBm) and its basic properties have been studied by
Mandelbrot and Van Ness [18]. In the last decades, a lot of works have been carried out to
develop stochastic calculus with respect to fBm. The rigorous definitions of stochastic
integrals with respect to fBm and the theory of stochastic differential equations driven by
fBm as well as its applications have been studied intensively. We refer the reader to
two monographs [3,19] and the references therein for a more complete presentation of
this subject.

It is known that the impulsive effects exist widely in many evolution processes in
which states are changed abruptly at certain moments of time, involving such fields as
telecommunications, neural networks, mechanics, electronics, and finance and economics
(see e.g. [16]). Hence, it is quite natural to take into account the effect of impulses in the
investigation of stochastic differential equations driven by fBm. However, to the best of
our knowledge, no work has been reported in the present literature regarding the theory of
stochastic differential equations driven by fBm with impulsive effects. The aim of this
article is to study one such equation. Our work is inspired by the work of Caraballo et al.
[6] where the following stochastic differential equation driven by fBm with finite delays
has been studied:

dx(r) = [Ax(1) + f(t,x)]|dt + g() dWH (1), t €10,T],
{x(t) =¢(t), t€[—70]0=r71<o00).

In this article, we investigate the existence and uniqueness of mild solutions to semi-linear
stochastic Volterra equations with infinite delays and impulses of the following form in a
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Hilbert space

dx(t) = [Ax(t) + F (t,x;, [ok(t,9)x(s)ds) | dt + G()dWH (1), 1 €[0,T], t# 1,
Ax(ty) ::x(tk*) —x(tk_) :Ik(x(tk_)), k=1,2,...,m, (1.1)
(=), 1€ (0]

where A is the infinitesimal generator of an analytic semi-group of bounded linear
operators, (S(t)),~¢, in a Hilbert space X with norm ||-||, W# is a fBm with H > 1/2 on a
real and separable Hilbert space Y. The history x;, : (—00,0] — X, x,(6) = x(t + 6),0 =0
belongs to an abstract phase space B,. The Volterra kernel k(z,s) is non-negative
continuous function on ¢ €& [0,;], The functions F:[0,T]XB,XX—X,
G : [0, T]—»L',(Z)(Y,X), and I; : X— X are defined later. Furthermore, the impulsive
moments satisfy 0 =1y <t} <t <--- <ty <tyy1 =T, x(t,j),x(tk’) denote the right
and left limits of x(7) at r = #;. The spaces 3, and Lg(Y ,X) are defined in Section 2.

It is known that fBm is a generalization of Brownian motion, it reduces to Brownian
motion when H = 1/2. In fact, the existence and uniqueness of mild solutions to
stochastic Volterra equations with delay and impulsive effects, driven by a Brownian
process in Hilbert spaces are now well established (see e.g. [2,14,15,24,25] and the
references therein), but the equations driven by fBm have not yet been fully developed.
The Equation (1.1) belongs to the class of stochastic delay differential equations driven by
fBm. This class is so new that only few works have appeared till date. The finite
dimensional equations was first investigated by Ferrante and Rovira [10] and then by
Neuenkirch et al. [20], Boufoussi and Hajji [4], Dung [8], Ledn and Tindel [17], and some
other authors. The case of the equations in a Hilbert space has been considered by
Caraballo et al. [6] and by Boufoussi and Hajji [5]. The finite dimensional stochastic
Volterra equations with delay have been recently studied by Dung [9]. We would like to
emphasize that in most of these works, the delays are finite. Thus, the appearance of
infinite delay and Volterra term in (1.1) as well as the study of the problem in a Hilbert
space make our article more interesting even in the case without impulses.

This article is organized as follows. In Section 2, we recall the definition of the
fractional Wiener integral with respect to an infinite dimensional fBm and the definition of
mild solutions. Section 3 is devoted to study the existence and uniqueness of mild
solutions when the impulses are Lipschitz. The case of bounded impulses is studied in
Section 4. Conclusion and an example are provided in Section 5.

2. Preliminaries

In this section, we first recall the definition of Wiener integrals with respect to an infinite
dimensional fBm with Hurst index H > 1/2. We also refer the reader to [7] for a detailed
presentation of this integral and for a short review of the development of stochastic
differential equations driven by fBm without impulses in a Hilbert space.

Let (Q), F, P) be a complete probability space and 7 > 0 be an arbitrary fixed horizon.
A one-dimensional fBm with Hurst parameter H € (0, 1) is a centred Gaussian process
B ={BH(t),0 =t = T} with the covariance function Ry(t,s) = E[B"(1)B"(s)]

Rutt,5) = 5 (1P + 158 — 1 = s).

N =
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It is known that B(r) with H > 1/2 admits the following Volterra representation:

t
B0 = | KG9 g0 @1
where S is a standard Brownian motion and the Volterra kernel K(z, s) is given by

1 _
u\ H—(1/2)
f) du, t=s.

K(t,s) = cHJ (=51

N

s

For the deterministic function ¢ € L?([0, T]), it is known from [3,21] that the fractional
Wiener integral of ¢ with respect to 8 can be defined by

T

T
L o(s)dB" () = JO K o(s) dBGs),

where Kj;¢(s) = [ @(r)(9K /or)(r, s)dr.

Let X and Y be two real, separable Hilbert spaces and let £(Y,X) be the space of
bounded linear operators from Y to X. For the sake of convenience, we shall use the same
notation to denote the norms in X, Y, and £(Y,X). Let {e,,n = 1,2, ...}, be a complete
orthonormal basis in Y and Q € L(Y,X) be an operator defined by Qe,, = A, e, with finite
trace trQ = ZZOZI)\n < oo, where A,,n=1,2,... are non-negative real numbers.
We define the infinite dimensional fBm on Y with covariance Q as

W) =" Vel ),
n=1

where BnH () are real, independent fBms. This process is a Y-valued Gaussian; it starts from
0 and has zero mean and covariance:

EWH @), xXWH(s),y) = R(t,s){Q(x),y) for all x,y €Y and 1,5 € [0,T].

In order to define Wiener integrals with respect to the O-fBm, we introduce the space
52 = Eg(Y7 X) of all Q-Hilbert—Schmidt operators ¢ : Y — X. We recall that ¢ €
L(Y,X) is called a Q-Hilbert—Schmidt operator if

pllze = "I/ Apenl? < oo
n=1

and that the space Eg equipped with the inner product {¢, i) o= S {gen, e, is a
separable Hilbert space.

The fractional Wiener integral of the function ¢ : [0, 7] — Eg(Y,X) with respect to
Q-fBm is defined by

(e8] (o)

Ld«s) AW =" JOWT,, Y(s)endBll(s) = > JO MoKy (en)(5) dBu(s),  (2.2)

n=1 n=1

where 3, is the standard Brownian motion used to present Bf as in (2.1).
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Noting that unlike the classical Wiener integral, the Itd isometry formula is not
available for the fractional Wiener integral. However, we have the following fundamental
inequality which was proved in [6].

LemmA 2.1. If ¢ : [0, T] — Cg(Y7X) satisfies fglllﬂ(s)llig ds < oo then the sum in (2.2) is
well defined as a X-valued random variable and we have

t 2 1
[ sy awc) | = 21 [ ooy as.
0

g
0

It is known that the study of the theory of differential equation with infinite delays
depends on a choice of the abstract phase space (see [12]). Let us present an abstract space
phase. Assume that /2 : (—o0, 0] — (0, c0) be a continuous function with f(lwh(t) dr < oo,
We define the abstract phase space B), by

B, = {(b: (—00,0] — X : forany a > 0,(E||(1’)||2)1/2 is bounded and measurable

0
functionon [—a,0] with $(0) =0 and J h(t) sup (Ell¢lI*)'/>dr < oo}‘

t=60=0

If we equip the space Bj, with the norm

0
ol = | ko sup (oI,

1=0=

then (B, ||-|l5,) is a Banach space [13].
We now consider the space Bp; (D and I stand for delay and impulse, respectively)
defined by

Bp; ={x: (=00, T]— X : x|I; € C(I;,X) and x(t,f),x(t,:) exist with

2.3
(1) = x(t)yx0 = ¢ € B,k = 1,2, ..., m}, (23)

where x|;, is the restriction of x to the interval Iy = (t, fx+1],k = 0,1, ..., m. The function
IIll5,, is a semi-norm in Bpy, it is defined by

lxlls,, = lxolls, + sup (Ellx(olI*)"/>.
0

=t=T

The following lemma is a common property of phase spaces. It can be easily found by a
simple computation.

LemmaA 2.2. Suppose that x € Bpy, then x, € By, for all t € [0, T] and

lxills, = lixolls, +a sup (Ellx(s)I*)"/?,

O0=s=t
where a = f(iooh(t) dr.

We end this section by giving the definition of mild solutions for the Equation (1.1)
which is similar to the deterministic situation. For simplicity, we can assume that

x(0) = ¢(0) = 0.
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DEFINITION 2.1. A X-valued stochastic process {x(¢),t € (—o0,T]} is called a mild
solution of the Equation (1.1) if xo = ¢ € ), on (—o00, 0] with ¢(0) = 0 and the following
conditions hold

(i) for each r € [0,T1], x; is a B-valued function and the restriction of x(-) to the
interval (¢, tr+1],k = 1,2, ..., m is continuous,
(i) for each t € [0, T], we have a.s.

@), 1E€(—00,0],
JoS(t = )F (s, x, [ k(s,u)x(u)duyds + [ St — )G(s)dWH(s), 1€[0,1],
D=9 86— 10 (xe(60)) +1e (x(7 ) + S = $)F(s,xq, [o k(s,u)x(u)du)ds
+ [} St = 9HGSAW(s), 1€ (1, tip1], k=1,2,...,m,
(2.4)

(iii) for each k, the limits x(t,f),x(tk_) exist with x(¢, ) = x() and Ax(ty) = I (x(z; ).

3. Equations with Lipschitz impulses

In this section, we investigate the existence and uniqueness of mild solutions when the
impulsive functions are Lipschitz continuous. In order to prove the required results, we
assume the following conditions:

(Hy) A is the infinitesimal generator of an analytic semi-group, (S(¢));~o, of bounded
linear operators on X. Moreover, S(¢) satisfies the condition that there exists a positive
constant M such that for t € [0, T]

ISl = M.
(H,) There exist Ly, L, > 0 such that
EIF(t, yr.x) — F(t, o, 0)I° = Lilly — ¢ll, + LEllx — ylI’

forall € [0,T], ¢, ¢ € B, and x,y € L*(Q, X).
(H3) For each k = 1,2, ..., m, there exist a constant p; > 0 such that

17:06) = LI = pillx = yII°
for all x,y € X.
(Hy) The function G : [0, T] — Eg(Y,X) satisfies
T
me@m<”
THEOREM 3.1. Assume that the conditions (H;) — (H4) hold. Then, the Equation (1.1) has
a unique mild solution, provided that

max (3M*(1+ pe 4+ T*(Lia” + L,K"))) < 1, 3.1

k=1.2,....m
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where

; 2
K* = ( sup J k(t, s)ds)
o=r=rJo

Proof. Our proof is based on the Banach contraction principle. To do this, we define the
operator ® on Bp; by

d(@0), 1€& (—00,0],

[o St = F(s, x5, [ k(s, wx(u) du) ds + [{, S(t — $)G(s) AW (5), 1 € [0,11],

Dx)(1) =
(00 S = 1) (x(10) + I (x(17))) + [, S = 9F (s, xg, [ok(s, wx(ue) du) ds

+[) St = )GE AW (s), 1€ (], k=12,....m.

(3.2)

From the conditions (H;) — (Hy), it can be seen that ® maps Bp; into itself. Let y :
(—o0, T]— X be the function defined by

P0), 1€ (~0,0]
y(”:{ 0. €7,

then yg = ¢. For each z : [0, T] — X with z(0) = 0, we define the function Z by

0, 1€ (—0,0],
2 = {z(t), 1 €10,T].

If x(-) satisfies (2.4) then we can decompose x(¢) into x(r) = y(t) + z(¢),t € (—oo, T]. This
implies that x, = y, + Z, and the function z(-) satisfies

Jo St = F(s,y5 + Zs, [ k(s, w)(y(w) + z(w)) du) ds

+[o 8t = $)G(s)dWH(s), 1€ [0,1],

20 = 4 Se=1(a(t0) + L(z(t ) (3.3)
+ [, S = F (s, ys + Zs, [o ks, 0)(y(w) + 2(w) du) ds

+[} 8@ = )G dAWH(s), 1 € (i, tea], k=1,2,...,m.

Set B%, ={z € Bp;: 20 =0} and let ”’”BE,, be the norm defined by

lzllzo, = llzolls, + sup (Ellz)lI))'? = sup (Ellz]I*)"/>,

0=r=T 0=r=T
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Thus, (B, lIll g ) is a Banach space. Define W : BY, — BY, by

[o St = F(s,y5 + Zs, [ ks, w)(y(w) + z(w)) du) ds
+[5 8¢t = $)G(s)dWH(s), t € [0,1],
(Wo)(r) = { St~ 10 (2t ) + Ik (2())) (3.4)
+ [} S = $)F(s,ys + Zs, [ok(s, 0)(y(w) + 2(w)) du) ds
+[} S = )G dAWH(s), 1€ (el k=1,2,...,m.

It is clear that the operator ® has a unique fixed-point if and only if ¥ has a unique fixed
point. Thus, it is sufficient to show that W is a contraction map. Let z, 2 € B%,, then for all
t € [0,1,] we have

Ell(¥2)(0) — (PO SE‘

J St — ) (F(&ys + ZY,J k(s, u)(y(u) + z2(u)) du)
0 0

2

—F <s, Vs + Z:., J k(s, w)(y(u) + Z%(u)) du)> ds
0

!
— _*112
= MZTj (walle, — 218,
0

+L2E IILk(s, w)ly(u) +z(w) — y(u) — Z*(u)]duHZ) ds.

By using Lemma 2.2, we get

El(W2)(1) — (¥H0II° = MZTJ (L1a2 sup Ellz(u) — 2" W)’

!
0 O=u=s

+LK” sup Ellzu) — z*(u>||2>ds (3.5)

O=u=s

= MT*Lia* + LK)z — z*llégl, Vi € [0,1].

For ¢t € (11, 1,], in the similar way to the above estimate, we have

g

J ) (F(& Vo + 7o, j ks, )(y(10) + (1)) du)
1 0

t

X 2
—F(s,ys+z;J k(s,u>(y<u)+z'<u))du)) ds = MT*(Lia® + LK ") llz — 2"l .
0
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Hence,
Ell(W2)(0) — (W)OIF = 3E]|S¢ — m)(z(t7) = 2" (7))
+3E||S6 = ) (1 (=(7)) = L ()]
! N
| sa= <F <s7yx + 2, | k000 + 200) du)
0

I

+3t]

2

—F (s, Vs + Z;, J k(s, u)(y(u) + Z+(u)> du)) ds
0

= 3M%(1 + pDElz(t7) — 2D
+3M T (Lya + LK )iz = 2" Iy .

As a consequence,

El(W2)(t) = (W2 )OI < 3M> (14 p1 + T (Lia® + LK)z = "Il . V1 € (11,151,

Similarly, when ¢t € (t, ty+1], K = 2,3, ..., m, we also have

EI(W2)(0) = (YOOI =3M (14 p+ T (Lra® + LK)z = 2" Iy V1 E (1,1

Thus, for all t € [0, T]

E(¥2)(1) = (TN = Jmax  (3M?(1+ p+ T (Lia® + LK)z = "l -

This, together with the condition (3.1), implies that ¥ is a contraction map and, therefore,
it has a unique fixed point z € BY,.
The proof is complete. O

We end this section by showing the existence and uniqueness of a mild solution for a
stochastic evolution equation without impulses which has been discussed by Caraballo
et al. [6] when the delay is finite.

COROLLARY 3.1. Assume that the conditions (H;) and (H4) hold and that there exists
L; > 0 such that

ElF (@, ) = F@t, @I = Lilly — ¢ll,

for all t € [0, T], ¥, ¢ € By. Then, the stochastic evolution equation with infinite delay

(3.6)

dx(r) = [Ax(t) + F(t,x)]|dt + G(t)dWH (1), € [0,T],
{X(I) = @), te (—%,0],

admits a unique mild solution for any initial data ¢ € Bj,.
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4. Equations with bounded impulses

The aim of this section is to prove the existence and uniqueness of mild solutions when the
impulsive functions are bounded. Let us introduce two new assumptions.

(Hs) F : [0,T] X B, X X — X is continuous, and there exist two continuous functions
My M2y U3 L [Oa T] - (07 OO) such that

ElF(, o, 0I° = mOllelly, + m@ElxI’ + us(0)

forall t € [0,T], ¢ € By, and x € L*(, X).
(He) Iy : X— X, k= 1,2, ..., mare continuous and there exist finite positive constants
dy such that [|I;(x)|| = di for all x € X.

Because of the lack of the Lipschitz property of the impulsive functions, it seems to be
impossible to use the contraction mapping principle in proving the existence and
uniqueness of the solution. The main result of this section is based on the following fixed-
point theorem (see, for instance, [23]).

LEMMA 4.1 (SCHAEFERS FIXED POINT THEOREM). Let (D, ||-||)be a normed space, and let the
operator A : D — D be a continuous map which is compact on each bounded subset of D.
Define

SA)={xED:x=Mx, A€ (0,1).

Then, either

(i) the set S(A) is unbounded, or
(ii) the operator A has a fixed point in D.

THEOREM 4.1. Suppose that (H) and (H4) — (Hg) hold. Then, the Equation (1.1) has at
least a mild solution. Furthermore, if (H;) holds, then the solution is unique.

Proof. Before giving a proof of the results, let us show a useful estimate which is based on
the condition (Hs)

X 2

EHF(s,ys bz, J (s, u)(y(0) + 2(u)) dut)
0

2

= w®llys + Zsllf;,, + ma()E +u3(s)

J' (s, u)(y(0) + 2(u)) du
0

.1

= 2u1<s>(||¢||§g,7 +a? sup E||z<u>||2> K" sup Elll? + ps(s)

O=u=s O=u=s

= 2 (Hqsnéh T a? sup Ellz(u)||2) + K" sup Bl + i,

O=u=s O0=u=s

where ;= sup p(s), i =1,2,3.

0=s=T
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Existence. We define the operator WV : BOD, - BOD, as in Theorem 4.2. In order to be
able to use Lemma 4.1, we separate the proof into four steps:
Step 1. We first show that the subset

S(W) = {z € By 1 2= A¥(), A € (0, D}

is bounded. Let z € S(W), then z = AW (z) for some A € (0, 1). Then, for each ¢t € [0, 7],
we have

1

z2(t) = )\J S(t — s)F (s,ys + z,, JS k(s, u)(y(u) + z(u)) du) ds + )\J St — $)G(s) dWH(s).
0

0 0

This, together with the condition (H;) and Lemma 2.1, implies that

ElolP < E‘

J S(t — 5)F <s, Y +zs,J‘ k(s, u) () + () du) ds
0 0

t 2
+J S(t — $)G(s)dW ()
0

1 2
= 2M? H E ds
0

‘F (Syys + J k(s u)(y(u) +z(u)) du)
0

t
+2Ht2H—1J 1G(s)l1 70 ds}
. !

For t € (11,1,], we have

2O =St — 1) (z(17) + 11 (z(17)))

+ AJ S(t—s)F <s,ys +Z, JS k(s,u)(y(u) +z(u)) du) ds+ /\J S(t— $)G(s)dWH(s)
0

n n

=AS(t — 1), (z(tf)) —i—)\J S(t —s)F (s,ys +ZS,J k(s,u)(y(u) +Z(u))du> ds
0 0

+ /\J St — $)G(s)dW(s).
0

Hence,

2

Elzll* = 3M> ds

d% + tJ EHF (s,ys + z,, J k(s, w)y(u) + z(w)) du)
0

0

3
+2Ht2H_1J lG(s)] |ig ds} .
0
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Similarly for t € (t, tx+11, kK = 2,3, ...,m, we can obtain that

2
ds

m 2 t S
Bl = 302 (de> wi] (s z [ ko000 + o)
k=1 0 0

t
+2H ! J ||G(s)||ig ds}, Yt € [0, 7).
0

We now use the estimate (4.1) to get

O=u=s

1
sup kGl = 3m” H (2;;; <||¢||§3h +a? sup EIIz(u)||2> K sup EIIZ(u)IIz) ds
=u<t 0 =uU=s

T m
+M§T2+2HT2H*1J IG(s)I17 ds + (de> , Vt€[0,T].
0 k=1

An application of Gronwall’s lemma to the above inequality yields

T
sup Ellzall” = 3M2 [2T2pfi‘||¢||§h + T + 2HT2”*IJ IG(s)174 ds

O=u=t 0

n 2
+ <de> ]&MZT(ZM’MZWZK*)Q vz € [0, T1.
k=1

So, the set S(V) is bounded.

Step 2. Let B, = {z € B%I : ||z||3%1 = ¢}. We will show ¥ maps bounded sets B, into
equicontinuous sets. Let u,v € [0,7;], without loss of generality, we can assume that
u = v. Then,

W) — (P2 w) = J

0

+J S(v—s)F(s7y.y+zs,J (s, )(y(u0) + 2()) due) ds
0

u

S =) — S(u — s)F (S,ys + Zs, J k(s, w)(y(u) + z(u)) du> ds
0

+ r (S(v — 5) — S(u — $)HG(s)dW(s) + JV S(v — $)G(s) dWH(s) :
0 u

=01+0,+ 05+ 04
We, therefore, have

El(W2)(v) — W)* = 4ENQi > + ENOa I + EllQsII” + ENlQall), (4.2)
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where

2
Elo\I’ =E

U (S —5) = Su — 9))F (S,ys + ZmJ k(s, w)(y(u) + z(u)) du) ds
0 0

2
ds

= Ju ISV — ) — S — o) der
0

0

’F (s,ys bz, J (s, ) (y(a0) + 2(0) du>
0
<[ lIsw =9 - Sw— )P ds u(z *(ll 2 +a%?) + wiK'g® + ut)d
= wy\1lls, +aq” ) + noK'qg” + py )ds
0 0
= (2 (101, + ') + w3k g + 3 ) | =9 = St =)l o

2

J S = sF (S7ys + Z.s,J k(s, u)(y(u) + z(u)) du) ds
0

u

Elos Il = E’

= (205 (I3, +a%?) + wiKg? + u3) v - u>J IS = )11 ds,

u

2

Elos Il = E’

r S —5) — Stu — )G(s) AW (s)

0

< 2Hu2H—1Ju (S — s) — Su — s))G(s)||§g ds,
0

EllQul? = EIIJ S(v — G(s) AW (5)|1

u
v

< 2H(v — u)ZH_IJ IS — S)G(S)Hig ds

u
v

< 2MH(© — u)”HJ ||G(s)||ig ds.

u

Obviously, EIIQ2|I2 — 0 and E||Q4||2 — 0 as u— v. Since S(7) is strongly continuous, this
implies that E[lQiI°—0 as u—v. Moreover, [[(S(»v—s)— Su— s))G(s)|[70 =
4M2||G(s)||io € L'([0,T]), we also have ENOsII* — 0 by the dominated convergeznce
theorem. ’

Similarly for u,v € (ty, txr+11,k = 1,2, ..., m, we have

Ell(W2)(v) — (W)@)l> = 6E||[Sv — 1) — S — 1)1z(t7) ||

+ 6E||[SOv — 1) = S — t)Mk (7))

+6(ENI” + EO: I + ENQsIP + EllQal)
= 6q LIS = 1) = Stu = 1)lI”

+ 6d2EIS(v — 1) — S — t)lI”

+6(EIQiIF + EIQ:IF + EllQsIF + EllQalF ).

I

4.3)

The right hand sides of (4.2) and (4.3) do not depend on x € B, and converge to 0 when
u— v. This proves that ¥ maps bounded sets into equicontinuous family of functions.
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Step 3. We now prove that W is an compact operator. Using the same arguments as in
Step 1, we can get

Ency@unffsanzk}‘ (2MT<H¢H;-+a2smaEﬂduMP)—%u;K*smoEHAunF)ds
0

O=u=s O0=u=s

2
T m
+,LL§T2+2HT2”“J IIG(s)IIigds+<de> . VtE|0,T],
0 k=1

which points out that if z € B, then ¥z € By for some ¢'. Thus, ¥ maps bounded sets
into bounded sets in B%,. This fact, combined with Step 2, means that the set {W(z) X
(t) : z € By} is relatively compact in BY,. Hence, W is a compact operator by the Arzela—
Ascoli theorem.

Step 4. We finally show that W is continuous. Let z € B%, and{z"},=, be a sequence in
B%I such that |[z" — z|| — 0 as n — co. Obviously, there exists an integer number g such
that z,,z € B, for all n = 1. Denote

F'(s) = F(S,ys + ZZZJ k(s, u)(y(u) + 2" (u)) du>
0

—F@m+mjk@mwm+mmw)
0

Since F is continuous on [0, T] X B, X X — X, this implies that F"(s)— 0 as n— .
Moreover, by the estimate (4.1), we have

ENF" @I = 8155 (115, +a%?) +4uik q? + 4ul.

Now, for every r € [0, t;], we have
2 ! 2 ! 2
E|l(Wz")(1) — (P2)0I” = Ellj St — $)F"(s)ds||” = MzTJ E|F"(s)IIds,
0 0

which means that E||(Wz")(t) — (¥2)@)||* — 0 by the dominated convergence theorem.
Since Iy, k=1,2,...,m are continuous functions, we also have the following
convergence for t € (t,ty+1], k= 1,2, ...,m
n n - - 2 n - - 2
Ell(Pz")(0) — (YOI = 3M2(E||z ) — 2(t) || +E| Ik (2" (7)) = Le(z(50)) ||
!

+M2TJ E||F"(s)||2ds)—»o, n— oo,

173

Thus, WV is continuous and by Lemma 4.1 the operator W has a fixed point. Hence, we can
conclude that the Equation (1.1) has at least a mild solution.

Uniqueness. From the above proofs, we see that the conditions (H), (H4),(Hs) and
(Hg) ensure the existence of the mild solution of (1.1). We will use the condition (H») to
show that the solution is unique.
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Let z,z" be two mild solutions of (3.3) with the same initial condition. On the interval
[0, #;], we have from (3.5) that

Ellz(0) — 2" 0II° = ENl(¥2)(1) — (¥z*)@)lI?

3
=MT(Lia*+ LzK*)J sup Ellz(u) — 2" )| ds,

0 O=u=s

which implies that

1
sup Ellz(u) — ")l = MT(Lya? +L2K*)J sup Ellzw) — ")’ ds.  (4.4)
0=u=t 00=u=s
An application of Gronwall’s lemma to (4.4) yields E||x;(f) — xz(t)ll2 = 0. This proves
that z(r) = z"(¢)a.s. for all t € [0, 7;].

On the interval (¢, t;], we have

2= =) (y(ry ) +z(ry) + (v (r7) +2(17)))

+ J S(t = $)F(s, ys +ZS,J k(s,u)(y(u) +2(u)) du)ds + J S(t = $)G(s)dW* (s),
0

1 4]

and
20 =Sa— () +2 (1) + L (3() +2 (1))

+ J St — s)F (S,ys +z, JS k(s, ) (y(u) + 2 () du) ds + J S(t — $)G(s) AW (s).
0

n 41

From the fact z(f]) = z"(¢]), we see that z,z" are also two mild solutions with the same
initial condition on the interval (¢, t;]. Thus, by Gronwall’s lemma, we also have z(¢) =
Z"(Ha.s. for all r € (t1,5,]. Similarly, we can conclude that z(r) = z"*(r)a.s. for all
te[0,T].

Since x(t) = y(t) + Z(t),t € (—o0, T], the proof of Theorem 4.1 is complete. ([l

COROLLARY 4.1. Assume that the conditions (H;) and (H4) hold and that the function
F:[0,T]XB,— X is continuous, and there exists continuous functions pu;,u; :
[0, T]1 — (0, 00) such that

ElF (@l = m®llell, + ma)

forallz € [0,T], ¢ € Bj. Then, the stochastic evolution equation with infinite delay (3.6)
has at least a mild solution for any initial data ¢ € B),.

5. Conclusion and examples

In this article, we proved the existence and uniqueness of the mild solution to a class of
stochastic Volterra equations with infinite delay and impulsive effects, driven by an fBm
with H > 1/2. Theorem 3.1 showed that the mild solution uniquely exists if the drift
function F and impulsive functions are Lipschitz continuous. In addition, when the
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impulsive functions are bounded we only need one more condition on linear growth of the
drift function to ensure the unique existence of the mild solution (Theorem 4.1). Thus,
under some suitable assumptions, if the drift function F is Lipschitz and has linear growth
then the appearance of impulses does not affect the existence and uniqueness of the
mild solution.

Our obtained results extend the results of Caraballo et al. [6] to the case of infinite
delay. In this sense, we partly enrich the knowledge of the theory of stochastic evolution
equations driven by fBm. We would also like to remark that the results of this article are
still true if we replace Q-fBm by a more general Q-Gaussian process as long as the
stochastic integral of G() with respect to this Gaussian process is well defined and has the
finite second moments. For example, one of such Q-Gaussian processes can be constructed
as follows: we consider one-dimensional Gaussian processes of the form

6,(t) := J K(t,5)dBu(s),
0

where K(z, s) is a Volterra kernel satisfying the condition (K4) required by Alos et al. [1].
Then, we can define a Q-Gaussian process by O(7) := fo:l JVA,e,0,(1), and the integral of
G(t) with respect to O(r) by

o0

J G(5)dO(1) = ZJ VAG(s)e, d6,(s),
0 0

n=1

where the stochastic integrals on the right hand side are given the formula (21) in [1].
We end this article with an example. It is known that the study of stochastic equations

in a Hilbert space is important because of its close connection to the theory of finite-

dimensional stochastic partial differential equations (see e.g. [11]). To illustrate the

obtained theory, let us consider a stochastic partial differential equation with impulsive

effects of the following form:

W, x) = 2t (t,x) + 1 H(t,x,5 — DOu(s,x)) ds + [(k(t, s)us, x) ds

at

+GOW (), 0=t=T, t#t, 0=x=m;
t ;.1
Aulti,x) = [* o qe(te — $)gu(s, x)ds, k=1,2,....m;
ut,0)=u(t,m=0, 0=r=T,

u(t,x) = ¢(t,x), —o0<t=0, 0=x=m

where W1 (¢) is a cylindrical fBm and the function G satisfies the condition (Hy).
Let X = L*([0, 7r]) with the norm ||-|| and inner product {.,.). Define A : X — X by
Az = 7" with domain

D(A) :={z € X : z,7are absolutely continuous 7’ € X, z(0) = z(m) = 0}.

Then,

Az=) n*(z,z), 7€ DA),

n=1
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where z,(t) = \/2/msin(nt), n = 1,2, ... is the orthogonal set of eigenvectors in A. It is
well known that A is the infinitesimal generator of an analytic semi-group (S(#));~( in X.
Furthermore, we have (see [22])

Sz =" e "z, z)z, forall z €X andevery 1> 0.

n=1

Since the analytic semi-group S(¢) is compact, there exists a constant M such that
[IS()|| = M. In other words, the condition (H) holds.

We choose the phase function i(s) = e*, s =0, then a = J"O_ooh(s) ds =1 < o0, and
the abstract phase space B, is Banach with the norm

0
Ills, = j h(s) sup (ESOIP)2 ds.

s=60=0

For (¢, ¢) € [0, T] X Bj,, where ¢(0)(x) = $(0,x), (0,x) € (—o0,0] X [0, 7], we put u(z) X
(x) = u(t,x) and define the function F :[0,T]X B;, X X — X for the infinite delay as
follows:

t 0 1
F <t, @, Jo k(t, s)u(s) ds) x) = J_ H(t,x, 0)O(p(0)(x))do + Jok(t7 s)u(s, x) ds.

Then, with these settings, Equation (5.1) can be written in the form of Equation (1.1)

We now assume that the functions gy : R— R, k= 1,2, ..., m are continuous and
dy == f(loo h(s)q,%(s) ds << oo, Then, the condition (Hy) is satisfied if g(-) is continuous and
bounded and the condition (H3) holds if g(-) is Lipschitz continuous. To verify the
conditions (H3) and (Hs), we suppose further that

(1) the function H(t,x, 0) is continuous in [0, 7T X [0, 7] X (—00, 0] and satisfies

T 0 2
J (J |H(t, x, 0)|d0> dx = p(r) < .
0 0

(i) the function Q(-) is continuous and EQ?*(p(0)(x)) = ||¢||f3h for all
(0,x) € (—00,0] X [0, 77].

(iii) the function Q(:) is continuous and E|Q(¢(0)(x)) — Q((,D(B)(x))l2 =|l¢ — (p”éh
for all (6,x) € (—o0,0] X [0, 7].

We can see from (i) and (ii) that

HF (L b, J k(t,s)u(s) ds)
0

2

T 0 t
=J (J H(t,x, 0)Q(¢(0)(x))d0+J k(t,s)u(s,x)ds) dx
— 0 0

0

2

m 0 0
SZJ (J |H(I;X> 0)|d9) (J |H(t,x, 0)|Q2(¢(9)(X))d0>dx

0

T t 2
—I—ZJ (J k(t,s)u(s,x)ds> dx.
0o \Jo
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Hence,

2

T 0 2
szj <J |H<t,x,9)|d0) axli il

0 —o0

EHF(t, @, Jl k(t, s)u(s) ds>
0

2

)

+26]

J k(t, s)u(s) ds
0

which implies that (Hs) is satisfied with w(7) = 2p(t), u2(¢) = 2, us3(t) = 0. Similarly, by
(i) and (iii) the condition (H,) is fulfilled with L; = 2p*, where p* = supg<;=7 p(f) and
L2 = 2

Since the conditions of either Theorem 3.1 or Theorem 4.1 are fulfilled, we can
conclude that Equation (5.1) has a unique mild solution on (—o0, 7] X [0, ].
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