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Chapter 1

Introduction

1.1 Introduction

Mitchell (2006) defined that Machine Learning seeks to answer the question “How can we build
computer systems that automatically improve with experience, and what are the fundamental laws
that govern all learning processes?”. Deep learning is a sub-domain of machine learning that involves
algorithms inspired by the structure and function of the brain known as artificial neural networks.
Like information processing taking place in the brain, information from input data is passed from
neuron to neuron, layer of neurons to layer of neurons. How the depth of neural networks affects
learning ability has been studied extensively by scientists. However, the deeper the network, the
more difficult it becomes to learn. This partly prevented the development of deep learning.

The advent of the residual network (ResNets) He et al. (2016) has brought a huge step forward
in the development of deep learning, as the number of classes has increased dramatically. Resnets
has transformed deep learning into a new anecdote with results that outperformed older models.
However, the question arises, what if the Resnets layer count reaches infinity.

In 2018, Chen et al. (2018) launched the Neural Ordinary Differential network - a new family of
neural networks, which answers the above question. Neural ODEs-Net is a combination of modern
neural network and numerical methods by using available ODE solvers. With the development of
ODE solvers over 120 years, Neural ODEs-Net has achieved many initial successes. In the scope of
this thesis we will present Neural ODEs-Net, strengths, weaknesses, architecture and its extensions.

1.2 Outline

Sequentially, we will go from the most basic of neural networks and numerical methods to the Neural
Ordinary Differential Equations Network and its extensions. Our thesis contains 5 chapters:

Chapter 1: It is a general introduction about Neural ODEs-Net, the scope of this thesis.

Chapter 2: We provide a detailed overview of the background of ordinary differential equations and
neural networks. In this chapter, we present about initial-value problem, some numerical methods,
architecture of a simple neural network, and its problems.

Chapter 3: We present about Neural ODEs-Net with its learning process and its implementation.
The forward and backward propagation will be elucidated. Chapter 2 also includes its architecture
for a supervised problem. Defining and implementing Neural ODEs-Net brings some strong benefits
of effective memory and adaptive computing with using the adjoint sensitive method for computing
gradients.

Chapter 4: It is straightforward to understand the properties of Neural ODEs-Net. From those
properties, the limitation of using Neural ODEs-Net is pointed out in the practice. At the same time,
we also present some models to improve the representation ability of Neural ODEs-Net. Because any
performance deficiency will obviates the need for using Neural ODEs-Net.



Chapter 5: It includes experimental results of both the original Neural ODEs-Net and its extensions
in the CIFAR10 dataset. We will compare their accuracy and judge about its representation ability.

1.3 Related Works

The idea of inter-presenting ResNets as approximate ODE solvers was previously spurred by researches
about reversibility and approximate computation in ResNets. They were proposed by Chang et al.
(2017) and Lu et al. (2018). LeCun et al. (1988) and Pearlmutter (1995) presented the use of the adjoint
sensitive method for training neural networks, but they did not demonstrate it practically. Taking
advantage of the power of modern ODE solvers, Chen et al. (2018) investigated Neural ODEs-Net
with the same properties of previous researches in more generality by directly using ODE solvers.



Chapter 2

Background

2.1 Ordinary Differential Equations

The term Differential Equation is begun by Leibniz, the Bernoulli brothers, and others from the mid
17t century. It became a branch of Mathematics, both in pure math and applied math (Archibald
et al., 2005). Differential Equation plays a prominent role in many fields. In Physics, it represents
the relationship between physical quantities and their rate of change.

In Mathematics, a differential equation is a mathematical equation that represents the relationship
between some unknown functions and their derivatives. There are some types of differential equations.
According to the properties of the equation, some of the most common types are ordinary or partial,
linear or non-linear, and order equation. In the scope of this capstone project, we just mention the
ordinary differential equation and the initial-value problem.

An ordinary differential equation is a differential equation which contains an unknown functions of a
variable and its derivatives Ang and Park (2008). An ordinary differential equation in function y(z)
is given by:

ao(2)y + a1 (2)y + az(x)y” + as(@)y® + ... + an_1(x)y" Y + az(n)y™ + p(z) =0, (2.1)

where, 3/ is the first order derivative, v is the second order derivative, y(*) is the k*" order derivative
of function y(z). In general, the equation of the form:

Fly,y',y",y®, .y g™y =0, (2.2)

which is called the implicit ordinary differential equation of order n (Simmons, 2016), or the explicit
ordinary differential equation of order n form (Kreyszig, 2009) is given by:

vy y ™,y D) =y (2.3)

To solve an ordinary differential equation, we ”"undo the derivatives” in the ordinary differential
equation Archibald et al. (2005). However, in the scope of this capstone project, we do not dive deep
into how to solve the general ordinary differential equation; we just focus on a particular problem,
Initial-Value Problem.

2.1.1 Initial-Value Problem (IVP)

Sometimes, we get a ordinary differential equation and its initial values that the solution of the
equation must satisfy given initial conditions, which is called Initial-Value Problem (IVP) (Burden
and Faires, 1985). A nt? order initial-value problem includes two parts:

(i) A n'* order ordinary differential equation is given by the form:

y™ = f(t,y vy y®, ey D), (2.4)

where f is a function of ¢, y and derivatives of y, y is a function of single variable ¢. f is
continuous in open set  in the (¢,y,v/, ...,y ) space.



(ii) Initial conditions which gives the values of y(t), 4/ (), ...,y (t) at particular point of ¢ can be
written in the form:

y(to) =Y
y'(to) =y
y" (to) =y (2.5)
y(n—l) (tO) = Yn-1

Wherev (thy()?ylv "'7yn—l) e Q.

In the scope of this capstone project, we introduce the first order initial-value problem and some
numerical method to approximate its solution. Give function f:Q C R x R™ — R"™, y is the function
of a single variable ¢, and its first order v/, the first order scalar initial-value problem is given by:

y'(t) = ft,y(t)), (2.6)

with a initial condition, which is a point in the domain of f, (tg,yo) € 2 that y(to) = yo.

Initial-value problems are quite complicated to solve, so there are two approaches to solve them. The
first one is to simplify the problem to another one which can be solved and then use the solution
of the simplified problem to approximate the original problem. The second approach, which is more
common, is to use some methods to approximate the solution to the original problem. In the following
part of this section, the second approach will be introduced.

2.1.2 The Existence and Uniqueness of Solutions

In this section, we introduce some methods to approximate a certain point satisfying the initial-value
problem. Through this chapter, we consider to find solutions of an initial-value problem

y'(t) = f(t,), y(to) = vo- (2.7)

A vector of function y of ¢ is called solutions of an initial-value problem if it satisfies that problem
(Mattheij and Molenaar, 2002).

For approximating the solutions to IVPs, we need some definitions and results from theories.

Definition 2.1.1. A function f(t,y) satisfies a Lipschitz condition on a set D if there is a constant
L > 0 such that

|f(ty1) — f(ty2)l < lyr — yal,

wherever (t,y1), (t,y2) are in D. L is a constant which is called Lipschitz constant for f.

Theorem 2.1.2 (The Existence and Uniqueness Theorem for First-Order Ordinary Differential
Equations.). (Burden and Faires, 1985) Let f(t,y) is continuous on D = {(t,y)|to <t < Tand —oo <
y < oo}. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem

y'(t) = ft,y), to <t < T, y(to) = vo
has a unique solution y(t) fort € [to, T

Now, we know that IVP 2.7 has a unique solution if the function f satisfies Lipschitz condition.
Besides, IVPs are also known as evolution problems (Mattheij and Molenaar, 2002) and solutions to
them are denoted as

y(t) = ¥(t;to, vo), (2.8)

where, y(t) is a solution to problem 2.7 and y(to) = yo. The curve U(¢;to,y0)|t € [to — €,t0 + €], € is
small, is defined to be the trajectory (orbit) of an IVP (Mattheij and Molenaar, 2002); if t > to, it is
called an positive orbit.



2.1.3 Numerical Methods for Initial-Value Problems

Approximating an initial-value problem is not to find a continuous approximation, which is close
to the solution to a problem. It is to find a point, sometimes space, approximating a value of the
initial-value problem. There are many techniques to do this approximation, and they are known as
numerical methods for solving initial problems. They are divided into three large categories: the
Taylor series methods, linear multistep methods, and Runge-Kutta methods (Griffiths and Higham,
2010). In the scope of this capstone project, we will introduce some of them, Euler’s method, Taylor
methods (the second-order and the n*’-order Taylor method), and Runge-Kutta methods (RK2 and
RK4). They are used to approximate solutions of the initial-value problems of the form:

y'(t) = f(t,y), to <t < T, y(to) = o (2.9)

Before going into details of these three methods, Euler’s Method, which can be interpreted as the
generalization of three large above categories of methods, will be introduced.

Euler’s Method

Euler’s method is named after Leonhard Euler, a Swiss mathematician, physicist, astronomer,
geographer, logician and engineer; he used it in his book Institutionum calculi integralis (Hairer
et al., 2000). Euler’s method is the simplest method to solve the ordinary differential equation with
initial conditions.

Euler’s method is used to approximate the solution of problem 2.9. Solutions to this method are not
expected to be a continuous approximation; it will be approximated at some certain points, which is
called mesh points, in the interval [tg, T]. Mesh points is evenly distributed over the interval [tg,T)].
Assuming that there are N approximated points; mesh points are selected by

t; = to + ih, for eachi =0,1,2,...., N, (2.10)
in which, A is called step size, which is distance between two adjacent points; h can be given by

h=tiy1 —t;i = LLHOJ-

Following Taylor series of y(t + h), we get the approximation with remainder
1
y(t+h) =y@) + hy' (@) + 5h%9 (), e [tt+h], (2.11)

where 1h%y(), the remainder term, is called local truncation error (LTE), which is denoted as R (t)
Then, if there exists a positive number M such that |y’ (¢)| < M, the remainder term follows

IRy (1)] < %MhQ. (2.12)
From problem 2.9, we get y'(t) = f(¢,y(t)). Replacing it into the Taylor series 2.11, we will obtain
y(t+h) = y(t) + hf(t,y(t)) + Ra(t). (2.13)
With mesh points, given by the form 2.10, and ¢t = ¢; (i < N), we substitute into above formula
y(tiv1) = y(t:) + hf(ti, y(t) + Ra(ts). (2.14)

Reconstructing formula 2.14 by denoting w; & y(t;) to remove the remainder term, the Euler method
is

wy = Yo, (2.15)

wiv1 = w; +hf(t;,w;), foreachi=0,1,2,..,N — 1. (2.16)

The Taylor Methods

In the above part, we introduce Euler’s method for solving an initial-value problem. It is the most
basic method, but in practice, it is seldom used because its error has a relationship with the step size
h. In particular, the local truncation error is O(h?), which means that it is proportional to the spare
of the step size, and the global error is proportional to the step size. Euler’s method is often the basis
to construct more complex methods, one of them is introduced in this section, the family of Taylor
methods.

As Euler’s method, the Taylor methods are constructed basing on the Taylor series expansion. In this
section, we introduce the second-order Taylor method in particular, and the n**-order Taylor methods
in general.



The second-order Taylor method. The second-order Taylor series expansion is given as the form:

h2
y(t +h) =y(t) + hy'(t) + gy”(t) +O(h?). (2.17)
Setting t = t;, we obtain
h2
y(tiv1) = y(ts) + hy'(t:) + ?yﬂ(ti) + O(h?). (2.18)

As in the above part, y'(¢;) can be computed from initial-value problem 2.9:

y'(t) = f(t,y(t)) (2.19)

Thus, y”(t) is computed by differentiating both sides of equation 2.19: y"(t) = f'(t, y(t)).

Substituting y'(t) and y”(t) into formula 2.18, we obtain

h2
y(tiv1) = y(t:) + hf(ti,y(ti)) + ?f/(tivy(ti)) +O(h%). (2.20)
Denoting w; =~ y(t;) to remove the remainder term, the second-order Taylor method is written as
wyo = Yo, (221)

h2
wir1 = w;+hf(t;,w;) + ?f’(thy(ti)), for eachi=0,1,2,...,N — 1. (2.22)

The n*"-order Taylor method is the general form of the second-order Taylor method. It follows
the nt-order Taylor series expansion, which is given with remainder:

2

h h3 h"
y(t 4+ h) = y(t) + hy'(t) + 5y”(t) + gy(:”(t) IS Fy(") (t) + O(hP*1). (2.23)

Similar to the second-order Taylor method, the n*"-order Taylor method is given by

wy = Yo, (224)
wis1 = w;+hT™ (t,w;), for eachi=0,1,2,....,N — 1, (2.25)

where,
n—1

h h
T (b, w;) = flti,wi) + §f/(ti7wi) + o+ £V (g, w).

n!
Euler’s method is also known as the first-order Taylor method.

Runge-Kutta Methods

As mentioned above, the family of Taylor methods has the high-order local truncation error, but
its advantages are to require to compute the derivatives of f(¢,y). In above section, we introduce a
method to eliminate to compute the derivatives, the family of linear multistep methods, and in this
section, one more method will be introduced, the family of Runge-Kutta Methods.

In the later 1800s, some methods like ones in this section were used to approximate solutions to
initial-value problems by Carl Runge. In 1901, Martin Wilhelm Kutta generalized the methods
Runge used to solve first-order differential equations. Therefore, nowadays, we call these techniques
the Runge-Kutta methods. The Runge-Kutta methods still have high-order local truncation error but
completely eliminate the computation of derivatives (Burden and Faires, 1985). In the scope of this
capstone project, we will introduce the Runge-Kutta second-order and the Runge-Kutta forth-order.

Before going into details of each methods, we need to consider Taylor’s Theorem in two variables.

Theorem 2.1.3. (Burden and Faires, 1985) Let (to,yo) € D = {(t,y)|t € [a,b],y € [e,d]}. Suppose
that f(t, y) and its partial derivatives of order k (1 < k < n + 1) are continuous on D. For every
(t,y) € D, there exists & and p such that t <& <tg, y < p <yo and

f(tvy) = Pn(t’y) + Rn(tay)v

10



where,

Palto) = o)+ [(6=t0) 2 o) + (0= 9005 .0

Mt _ 62 82 B 2 82
w o"hff (to,y0) + (t —to)(y — yo)?él;(to’yo) * @Qyo)ayj;(tmy())

3

R by Z( ) t—t0)" " (y — o)’ Wij;yj(to’y())]

and
n+1 e . an+1f
B +1|Z( ) to) (y—yo)m(fﬂ)

In theorem 2.1.3, P,(t,y) is known as the n‘"-order Taylor polynomial in two variable for f about
(to,y0), and Ry, (t,y) is the remainder term.

The Runge-Kutta Second-Order Methods. To derive a Runge-Kutta method, first, we have
to determine values for a;,a;, and By such that a; f(t + a1,y -+ f1) is a approximation of T2 (¢,y) =
ft+y)+ 5 f(ty) . Since

F(t9) = ) = S (60) + 5o (60) -y (0, (2.26)
we have, W W o
T(t) = Ft0) + 5 gy () + 5 5 (t0) ¥ () (2.27)

The first-order Taylor series expansion for f(t 4+ a1,y + (1) about two variables (¢,y) is given by

anf(+ an,y -+ B1) = S (1) + o 90 (1) + i 5 (1.9) + O (228)

Matching coefficients in Equations 2.26 and 2.27, we get

ar = 1, (2.29)
h
@ =5 (2.30)
h
aify = §f(t7y)7 (2.31)
S0, parameters are
ap = 1, (2.32)
h
o= o, (2.33)
h
B = () (2:34)
then,
h h
TO(t,y) = f (t + 5yt 2f(t,y)) +O(h?). (2.35)

Replacing T(?)(t,%) into second-order Taylor’s method 2.25 and construct w; ~ y(t) to remove
remainder term, we have a second-order Runge-Kutta method, which is also know as the Midpoint
method.

wo = Yo, (2.36)

h h
wiy1 = w;+hf(t; + -, w; + §f(ti7wi))u (2.37)

2
for each ¢ =0,1,..., N — 1.

11



To approximate derivatives in the second-order Taylor’s method, we need only three parameters. In
a more complicated situation, it is required more parameters for higher-order Taylor methods. For
example, to approximate

h h?
TO(ty) = f(ty) + 51 Gy) + "t y), (2:38)
we have
a1 f(t,y) +ax f(t + a2y + 62 f (L, ). (2.39)
We can also prove that a1 = as = % and as = 6o = h makes equation 2.38 equal to equation 2.39

(Burden and Faires, 1985). In that case, we get another second-order Runge-Kutta method, which is
called the Modified Euler method.

wy = Yo, (2.40)
Wiy = g[f(ti’wi)Jrf(tHl,wi+hf(ti’wi))}7 (2.41)

for each ¢ =0,1,..., N — 1.

The Runge-Kutta Forth-Order Method. Another method in the family of Runge-Kutta method
is the Runge-Kutta Forth-Order method, which has local truncation error Q(h*).

Wo = Yo, (242)
ko= hf(tsws), (2.43)
ky = hf (ti + g, w; + ;]ﬁ) ; (2.44)
h 1
ks = hfl(ti+ 5 Wit 57432 ; (2.45)
ke = hf(tiy1, wi+ ks), (2.46)
1
Wi+l = Wy —+ é(kl + 2k2 + 2]173 + 1174)7 (247)

for each¢=0,1,..., N — 1.

2.2 Neural Networks

Over the past few decades, today Artificial Intelligence has become a popular topic in many fields of
science and technology. The Google Translate multi-language translation system, Apple’s Siri virtual
assistant, the AlphaGo machine, Tesla’s self-propelled car and Amazon’s product suggestion system
are a few of the standout apps. Machine learning is a subset of artificial intelligence and a sub-field
of computer science. Its models are capable of self-learning based on the input data without any
specific programming. This section covers a class of the most popular machine learning algorithms -
feed-forward neural network, which is one of the most popular deep learning models nowadays.

Feedforward neural networks are information-processing models based on the re-simulation of nervous
system activity of animals. This includes the transmission of information between biological neurons.
However, the algorithms behind are often not used to accurately mimic what happens in the brains
of animals. A classic example of this is image categorization: when you see an image of a cat, for
example, your brain immediately recognizes it as an image of a cat, instead of a wolf, or any other
animal. Although biology has had a lot of research into this process of image classification, how the
brain can recognize images so quickly is still a studied topic. At this point, we have not been able to
write a static model capable of analyzing images of animals and accurately classifying which species
it belongs to.

We need a mathematical function that maps from input to output, from the cat image to the
conclusion that the image is of the cat. However, as stated in the above paragraph, we do not know
exactly what this function looks like, so we need an approximation function. The process of building
the model to find this approximate function is called training (or learning) and inspired by human
learning. In order to know a new animal, we first need to be given some examples for the brain
to accept and learn information. Analogous in feed-forward neural networks, we need to provide
samples labeled as input first, implying that these are examples of training models. When working

12



with approximation functions, we have to calculate the error between predicted outputs and desired
outputs, and minimize this error during the training process. Thus, the soul of feed-forward neural
networks is the optimization such that cost functions depending on the error are minimal.

In summary, it is ideal to consider the feedforward neural networks as functional approximation
machines intended to accomplish factual speculation, in some cases drawing a few experiences from
what we know about the brain, rather than as cerebrum work models. In this section, we introduce
feedforward the neural network, which includes component, architecture and learning process.

2.2.1 Feedforward Neural Networks

Feedforward neural network is known as the simplest neural network and one of the most popular
neural networks (Schmidhuber, 2015). In the feedforward neural network, the external data is
received by A input layer and passed through the network to produce output. Figure 2.1 describes
the architecture of a feedforward neural network.

Input Layer Hidden Layer Output Layer

-~ A -

P

N
e

N/

Figure 2.1: A feedforward neural network with 3 hidden layers

A feedforward neural network follows three attributes:

e Units, or artificial neurons, are organized into layers. The first layer takes the external data
as input of the network; the last layer produces output, which is also predicted value. Layers
between them are called hidden layers; there is no connection between them and external data.

e Each unit in one layer just connects to units in the previous and next layers.
e Units in the same layer do not connect to each other.

In the feedforward neural network, output of a layer is input of the immediately following layer so
layers compose each other by a mapping called activation function. This makes model of network
form the approximate value:

g = f(L)(W(L)Tf(L—l)(___(W(3)Tf(2)(W(2)Tf(1)(W(1)T$ + b(l)) + b(2)) + b(3))...) + b(L)), (2.48)

where, L is the number of layers; W) and b*) are parameters, which are weights and bias, of the
k" layer; f*)(.) is the activation function of the k** layer.

We have just taken a quick glance at the feedforward neural network; in the following part of this
section, we will go into detail about components, architecture and learning process of a feedforward
neural network.

Components of neural network

Units. Feedforward neural networks, and neural networks in general, consist of units, which take

inspiration from biological neurons. Each unit, also known as an artificial neuron, takes one or more
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data inputs and produces output, which can be shipped off numerous different units. The input of a
unit is external data or output of one or more units.

Besides units, the network consists of connections

that are defined as the relation between two units.

These relations are measured by weights which are

the strength of the connections. Weights influence

the measure of the impact an adjustment in the input

will have upon the output. Along with weights, biases, \*\wl
which are constants, are added into the input of the
following layer. Biases speak for to how isolated the w
predictions are from the desired values, and they also _—"
ensure that the input of units can be activated when
they are equal to zero.

To produce the output of a unit, first we sum the
weighted inputs and add bias to it; the result of this
process is called activation a. a is given by:

Input e — Output

.

Figure 2.2: A unit in the neural network

a=W'z+b (2.49)

In the final step, activations will be passed through the activation function. The value we receive after
this process is the output of the unit.

Activation Function, a part of a unit in the neural network, is a mathematical mapping that
determines the output of units. Activation function is also known as a transformation function, which
transforms the input in other form, for example, in binary classification problems, the input is put
through an activation function to receive the output in range 0 and 1.

The activation function may be divided into two categories: linear activation functions and non-linear
activation functions. The linear activation function, or the identity activation function, is defined
as f(z) = x. The linear activation function returns to output in no certain range (—oo,00), that
doé not help anything in transform the input. In practical, the non-linear activation function is used
to transform the input. In the scope of this capstone project, two of the most popular non-linear
activation functions, sigmoid functions and ReL.U, are introduced.

Sigmoid Function. Many Machine Learning problem required to classify input into two classes.
Sigmoid function is a mapping which maps input to output which is in range (0, 1); it is defined as

1

9(2) = a(2)

1.0 -~ —— sSigmoid function of x ===

0.8

0.6

gix)

0.4 4

0.2 4

0.0 4

Figure 2.3: Sigmoid Function
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The sigmoid function curve looks like a S-shape, it goes through the point (0,0.5). It is monotonic
and has two horizontal asymptotic at y =0 and y = 1.

The main reason why sigmoid function is used is that it returns the result between 0 and 1. Sigmoid
function is also differentiable that means the slope of sigmoid curve can be found at any points; it is
easy to calculate derivatives to update parameters at backpropagation step.

For multiclass classification problem, the softmax function is used instead of sigmoid function.

Rectified Linear Units (ReLU). Sigmoid function returns the value in range (0,1), that can
cause a network to get stuck when training (we will explain deeper in following sections). To solve
the problem caused by sigmoid function, the Rectified Linear Unit, or ReLLU, activation function is
given by

g(z) = maz{0, z}, (2.51)

where z is an activation; in the scope of this capstone project, z is written z = a = W'h+b

6 7 —— glz) = max(0, z)

Figure 2.4: Rectified Linear Units Activation Functions

Layers. Units in a neural network are organized into multiple blocks, which are called layers. In
feedforward neural networks, units in the same layers do not connect to each other; they only connect
to units in the previous layers and units in the next layers.

There are three types of layers in a neural

network. Each network has only one input Input Layer  Hidden Layer  Output Layer
layer and one output layer. Input layer is the
first layer of a network, while output layer is the =

last layer of a network. Besides input layer and
output layer, a multi-layer neural network can
have zero or more hidden layers. Layers in the
network are arranged in the order of input layer,
hidden layers, and output layer. The number
of layers in a network is denoted by L, which
is calculated by summing the number of hidden
layers and the number of output layers. The first
layer, or the input layer, is denoted as the 0"
layer.

Y/

/

Figure 2.5: Layers of a feedforward neural
network.

If there is more than one layer in a network, it is called a multi-layer neural network. The
fully-connection between 2 layers is that every neuron in a layer connects to every neuron in another
layer. In a feedforward neural network, except input layer, layers take input from the output of the
immediately preceding layer. Each unit in the layer sends its output to the following layer, and it
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will be transformed by operation 2.49, and become input of the following layer. Output of the output
layers is also output of the models, which are predicted values. Outputs of the hidden layers are not
shown that is the reason why they are called hidden.

Architecture of feedforward neural network

The term architecture refers to the structure of a network. In the

feedforward neural networks’ model, output of the k-th layer is given !
by:
k k E)Tp (k—1 k

hk) — f( )(W( )T RS )—l—b( ))7 (2.52) i
where, W) and b*) are the matrix of weights and vector of biases S
of the k-th layer. The h*~1 h*) are outputs of k" and (k — 1) '
layer. :
Following  operation  2.52, in the feedforward mneural {”
network, input of a layer is the transformation of its 3
immediately preceding layer’s outputs. Layers in the '
feedforward mneural network compose each other. This f'U
makes the feedforward neural network look like a directed .
acyclic graph, it has no feedback connection or no cycle. . .
In figure 2.6, feedforward neural network’s  structure Figure 2.6: Architecture of
is like a chain; its architecture is also named chain the feedforward neural
structure. network.

The Universal Approximation Theory. The goal of feedforward neural network model is to
find a function f that maps any attributes x to output § = f(x). We expect that we can find a
function f which produces output ¢, very closed to the desired value y. The Universal Approximation
Theorem shows that a feedforward neural network can represent any functions.

Cybenko (1989) showed that two-layer feedforward neural networks with sigmoid activation functions
can approximate any continuous function on D C R In 1989, Hornik et al. proved that two-layer
feedforward neural network with any ”squashing” function can approximate any function f(.). In
1990, it was proved that the derivatives of function f(.) can be approximated by using the derivatives
of the feedforward neural network (Hornik et al., 1990). In 1993, the universal approximation theorem
was proved for a wider class of activation functions by Leshno et al..

The universal approximation theorem shows that there exists a feedforward neural network which
is large enough to represent any functions. It is expected that the network has more layers, it can
produce the output closer to the desired valued. However, in practice, increasing more numbers of
layers in a network will lead to some problems, which we will discuss in some following sections.

2.2.2 Gradient-Based Optimization
Cost Function

The feedforward neural network model is a mapping that maps the input & to the output
9 = f(x; W,b) that is the best approximation of the desired value f*(x). There is difference
between the predicted value § and the desired value y = f*(x), which generates an error. The goal
of feedforward neural network model is to estimate parameters W and b that the model produces a
value very close to the desired value. Therefore, the strategies is to change parameters W and b of
model by minimizing the error of the network model.

The error of a network model is calculated by the cost function. It measures the performance of a
neural network model with the given data. It is given by:

m

TW.8) = — 3" Ligi.), (25)

=1

where, m is the size of given dataset; x; is the input data; ¢; and y; is the predicted value and the
desired value of the " data sample.
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L(.) is the loss function, which evaluates the difference between the predicted value and the desired
value of a sample. In some case, it is ideal that the predicted value 7 is equal to the desired value y.
However, in deep learning problems, it is not expected to get the optimal value; the predicted value
7 is expected to be closed to the desired value y.

There are many ways to defined the loss function. In the scope of this capstone project, we mention
two of the most popular functions, they are Mean Squared Error (MSE) and Cross-Entropy.

Mean Squared Error, or MSE, is the most common loss function used in regression problems. It
is measured by squaring of the distance between the predicted value § and the desired value y. The
MSE loss is given by
L(g,y) = (5 —y)* (2.54)
Therefore, the cost function of the network become the mean of square of the errors
m

JW,b) = =3 (G- y)*. (2.55)

m <
=1

This loss function is used in regression problem, which is expected that the large errors have big effects
on the cost functions.

Cross-Entropy Loss is a function which estimates the distance between two probability
distributions. In Statistics, cross-entropy between two probability distributions p and q is defined
as

H(p,q) = Ep[-logq]. (2.56)
With p and g are discrete, 2.56 is rewritten

c
H(p,q) = =) pilogg;. (2.57)
=1

In Deep Learning, the output of a unit belongs to one of two distribution y and ¢, where y is the
probability of the desired output to be classified in the first class; and ¢ is the probability of the
predicted output to be classified in the first class. Thus, the loss value of a sample is given,

L(y, ) = ylog(§) + (1 — y)log(1 — 7). (2.58)

The cost function of the model is sum of loss function, which is written,

J(W,b) =

3 (log(si) + (1 - i)log(1 — 5) (2:59)

Gradient Descent

Gradient Descent is a optimization algorithm, in which local minimum of object function is found by
moving iteratively in the direction of steepest descent. In some Machine Learning and Deep Learning
problems, gradient descent is used to update parameters W and b with cost function J(W,b) as a
objective function.

Proposition 2.2.1. To find the local minimum of a function, take the step in the direction of the
negative of the gradient of a function at the current point.

Proof. To prove proposition 2.2.1, we have problem
mxin f(z) (2.60)
Let u is a unit vector. The directional derivative of f(z) in the direction of u is
Dyf(z) =Vf(z)- u (2.61)
Now, proposition 2.2.1 becomes: Let

min Vf(z) - u, (2.62)
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where, ||u|| = 1, have local minimum if Z(u, Vf(z)) =
Easy to prove,

Vi@)-a = [[Vf(@)|[a]l cost, 0 = Z(u,V[(z)) (2.63)
= |[Vf(@)|[1 cos® (2.64)
IV f ()] cos®. (2.65)
cosf € [—1,1],s0 Vf(z) -u>—||Vf(2)|
The equal 51gn at 0 = + k2. O

Let J(x; W, b) is a cost function which is defined and differentiable. As mentioned below, the function
J(x; W, b) decreases fastest if it moves in the direction of the negative of the gradient of J(.). Hence,
the update of W and b is written

W «— W —aVyf(W), (2.66)
b «— b—aVyf(b), (2.67)

where, a € R is called learning rate, which is small enough.

Stochastic Gradient Descent

In general, gradient descent is quite slow when applying in very large datasets. Stochastic gradient
descent , or SGD, is an extension of the gradient descent algorithm to solve the problem of training
models with large datasets.

The gradient of a cost function by parameters is computed by
VwJ(W,b) = ZVWL .y, W, b) (2.68)

and

VuJ (W, b) vaL y) W, b). (2.69)

The computation cost of operation (2.68) and (2.68) is O(m). It means if the size of the training
dataset grows too large, the time need to compute and update parameters becomes too long. The
solution for this problem is to divide the dataset into small part, and update parameters based
on that samples, this method is called Stochastic Gradient Descent (SGD). On each step of SGD
algorlthm we sample data to small pieces size m’ uniformly, which is known as minibatch of examples,

= {zM 2@ . (™)}, The size of minibatch m’ is chosen such that 1 < m/ < m, the value of m’
can be a few hundred, depending of the properties of the datasets. Sampling dataset into minibatch
data reduces the time complexity of the algorithm.

The gradient is written

1o o
gw =— ZleL(x(L)’y(Z)’ W, b), (2.70)
and )
RS i),
9= — S VeL(z,y D W, b). (2.71)

i=1

Parameters of model W and b are updated as

W« W —agwf(W), (2.72)
b « b—oagwf(b), (2.73)

where, « is learning rate.
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2.2.3 The Backpropagation Algorithm

The previous section described architecture a neural network. Learning process of training a
feedforward neural network consists of two phases: Forward Propagation and Backward Propagation.

Forward propagation refers to flows of information in order from the input @ that pass through a
collection of hidden layers to the output ¢ by calculating and storing intermediate variables. Learning
(or training) in deep neural networks requires computing the gradients for finding the optimal value
of cost function with back-propagation (or sometimes simply as ”backprop” for short algorithm. In
other words, back-propagation is a method to compute the partial derivatives of a cost function with
respect to the parameters of networks. In the scope of this capstone project, we will discuss about
the gradient of a function with chain rule and the way applying it to the back-propagation in deep
neural networks.

Chain Rule in Calculus

In calculus, the chain rule is a formula to compute the derivative of a function, in which this function
is composed by other differentiable ones.

First of all, we consider the chain rule with one variable (or the scalar case). Let function g is
differentiable at x and function f is differentiable at g(x), their composite F' = f o g maps from a real
number z to a real number that is a result of the function f(g(z)). Therefore, the composite function
F is differentiable at x and is defined by F(xz) = f(g(x)). The chain rule, expressing the derivative
F’, is written in Lagrange’s notation as follows:

Fl(z) = f'(g(x)).9'(x). (2.74)

We assume that y = g(z) and z = f(g(x)) = f(y). The variable z depends on the variable x via the
intermediate variable y ,if z depends on y and y depends on x. This relationship can also be described

by the chain rule in Leibniz’s notations as the following way:
dz dzdy
— == 2.75
dr  dydx ( )

The proof of chain rule: Let Ay be the change in y corresponding to change of Az in z and Az
be the change in y corresponding to change of Ay in y, we have:

Ay = g(z + Azx) — g(z), (2.76)
Az = f(y+ Ay) — f(y). (2.77)
It is tempting to write
4z _ o B2
dr  Awso Az
e
Azs0 Ay Az
Az Y
= A0 Ay At As 27
Ay

lim 22 1
= lim —. lim —%
Ay—0 Ay Az—0 Ax

Next, we consider the chain rule in the multivariable case with x € R™, y € R", g is a function
mapping from R™ to R, and f maps from R" to R¥. In terms of components, f and g are expressed

as y = g(x) = (91(x),92(x), ... gn(x)) and z = f(y) = (f1(y), f2(¥) -, fe(y)). The chain rule for
Jacobian matrices is the following formula:

(21, ey 21) 021, ey 2k) OY1,y +ovy 2Yn)

= . 2.79
N1y s @) OW1y ey Yn) O(T1, ooy Tin) (2.79)
We may simplify the above formula to get:
8(zla"'7zk) ia(zla"wzk) ayl
—_ = _ (2.80)



This can be rewritten as a dot product in vector notation:

oy T
Vaz= (o) Vyz (2.81)

Chain rule in Back-propagation

In order to use chain rules to calculate derivatives, the original function must be a composite function
first. As being presented in section 1.2, the function denoting to feed-forward propagation is a
composite function. As a result, the cost function J depending on ¥ is also a composite function.
Therefore, we can apply chain rule to compute derivatives. In the back-propagation, we need to find
the derivatives of the cost function in terms of the weights and biases.

For a single weight in [*" hidden layer, at the position (j,k), j = 1,...,n where n is the number of
inputs, kK = 1, ...,d where d is the number of linear combinations within one layer, the derivative is:

o7  oJ oY
0 l 1"
ow')  onl ow'y)

(2.82)

The same goes for biases:

0  0J onY
0= 5@ 0
oo on ob

(2.83)

In short, we have covered feed-forward, the chain rule, and the derivative calculation for individual
weights and bias. In the next section, we will discuss the back-propagation and its relationship to
forward in fully-connected Multi-layer Perceptron (MLP).

Backpropagation Algorithm in Feedforward Neural Network

For convenience, the chosen fully-connected MLP is simple and straightforward to understand. All
of gradients will be computed by using the above chain rule in this part. Before applying chain rule
to back-propagation, the cost function J needs to be computed in the forward propagation.

As being presented in the feedforward section, the forward process shows how to compute the total
cost J with respect to the weight matrices W and the bias matrices b. The cost function is the
sum of the loss L(¥,y) and an optional regularizer Q(#).The function denotes to each layer k is
f(a®)), where al®) is an activation. Briefly we have this equation f(a(*)) = f(WHEnk=1 4 pk)
with h®) = f (a(k)). Following algorithm 1 is the pseudo-code for summarizing forward propagation
step-by-step with [ layers:

Algorithm 1 Forward Propagation

Require: W, the weight matrix
Require: b, the bias vector
Require: g, the target ouput
hO = ¢
for k=1,..,1 do
a®) = wEpE-D | pk)
h") = f(a®)

7 = L(3,y) + \0(0)

After getting the cost function J from the forward propagation, the task of backward propagation is
to compute the gradients to find the optimal value for the cost function J. In other words, we have
to find the values of weights W and biases b such that J is minimal:

min J
Wb
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In order to find satisfying values of W and b, backward propagation computes the gradients of cost
function J on weights (V) J) and biases (Vi J) by the chain rule. Gradients will be computed
from the output layer to the first hidden layer and used for updating parameters right after being
computed. Back-propagation is presented in the algorithm 1.

Algorithm 2 Back-propagation and Update parameters
g« V) = VyL(3.h)
for k=10,1-1,....,1do
g Vo =g0 f(a®)
Compute gradients on weights and biases:
Ve J =g+ AVpa Q(0)
VirwJ = gh® DT LAV 6,Q(0)

Update weights and biases with a positive learning rate «:
w® —w® _ a0V
b =™ — oV

g Vo =WH®Tg

end for

2.2.4 Problems of Feedforward Neural Network
Vanishing Gradient in Feedforward Neural Network

In section 2.2.1, we mention the depth of the feedforward neural network. It is believed that the
deeper networks are, the better they can learn. However, in practice, very deep networks lead to
many problems, one of which is vanishing gradient problem.

The vanishing gradient problem is occurred when training feedforward neural networks with backward
propagation through too many layers. In the backward propagation step, the gradient of a layer is
computed based on its following layer; it means the layer k* has gradient by parameters,

*) ah(k) ah(k) ah(k—l) 3h(2) 5h(1)
IW = 5@~ Rt g2 " 9pM g

(2.84)

and

w  0h®  on® g+ R gpM
9o = % T D) 5 D) D o) (2.85)
b oh=Y oh or) ob

In some feedforward neural networks, ”traditional” activation functions ”normalize” the output of
each layers, that makes gradient very small. In backpropagration step, we multiply very small values
to compute the gradient, that makes gradients still so small. Thus, the weights and bias are slowly
updated and the training time increases.

In contrast to vanishing, exploding gradient problem is the situation that the gradients are calculated
by multiplying too large values.

Too overcome vanishing gradient problem, many methods were proposed. One of the newest ways to
resolve this problem is Residual Neural Networks, or ResNets.

Residual Neural Network

The idea of Residual Neural Network was proposed by He, Zhang, Ren, and Sun in 2016. The residual
network is organized into building blocks, which includes some layers; a building block connects to its
following block by a shortcut connection. A building block is given by

y=x+g(x;0), (2.86)

where, @, y are input and output; 8 is a parameter of the building block. The function g(.) is called
residual mapping; the operation x+ g(.) represent an element-wise addition and a shortcut connection
(He et al., 2016).
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x+g(x)

Figure 2.7: A building block in a residual network

Thus, the hidden state in a residual network is given by
20HD = 200 1 g(2(). 9®) (2.87)
where, z(*) is the hidden state at the i layer.

When stacking an infinitive numbers of layers in a residual network will lead to the neural ordinary
differential equations, which we will discuss in the following chapter.
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Chapter 3

Neural Ordinary Differential
Equations Network(Neural
ODEs-Net)

We use notations: d, is the total derivative (gradient usually denoted by d(.)/dx or V), 0, is the
partial derivative (usually, 0(.)/0;), d is the differential, and & = da/dt.

3.1 Introduction

As mentioned in the background chapter, the hidden state in a residual network can be written as the
flowing formulation

Zer1 = Z¢ + 9(%t, 01), (3.1)
where t € {0...T} and z;, € R? is the hidden state at layer t. This equation is rewritten as

Zi+1 — 2y

— = 0;). 3.2

t+1)—t 9(z1,0) (32)
If we add more layers until the number of layers goes to infinite, then the left side of Equation 3.2 is

the derivative of hidden state respect to t. Equation (3.2) can be expressed as an ordinary differential
equation with the initial condition is the input x, then we get the following IVP

dz(t) _
d(t | = g(2(t),0(t)), te[0,T], (3.3)
z(0) = x.

Chen et al. (2018) proposes a new family of neural network called Neural Ordinary Differential
Equations Network (Neural ODEs-Net). The main idea is to use a neural network of form f(z(t),t, )
to replace g in the IVP (3.3). Then, the new IVP will be

dz(t) _
5 = [E0.t.0), te.T], (3.4)
z(O) = X.

This IVP starts from the input z(0), passes through an ordinary differential equations solver to get
the outcome z(T') at some time T. Within this chapter, all parameters 6 are fixed over time and not
dependent on ¢t. This is slightly different from the Resnet version shown through Equation (3.3) when
the parameter 6(¢) depends on t. The main difference between Resnet and Neural ODE is that Resnet
works with discrete depth and Neural ODEs work with continuous depth. Using Neural ODEs has
some advantages when we no need to store any intermediate quantities of the forward for computing
gradients. The next section explains the learning process of this type of neural network.

3.2 Learning Process of Neural ODEs-Net

Like the neural networks that existed before, we need to learn parameters 6 of the dynamics f(z(¢), t, 6),
in which 6 is independents on ¢ . This learning process can be compassed by using the Adjoint Sensitive

23



Method (Pontryagin LS, 1962) and treating ODE solvers as black boxes. The two following parts detail
both the forward and backward propagation.

3.2.1 Continuous Forward Propagation

As mentioned in the IVP (3.4), z(t) follows the differential equation dzd—(tt) = f(z(t),t,0), where 0 are
the parameters. Theoretically, we can find the value of z(T') at the last time 7" with the initial value
z(0).

T
2(T) = 2(0) + / Fz(t),t,60)dt. (3.5)
0

The forward propagation that returns the outcome z(7T) can be completely resolved by using ODE
solvers without the need for computing integral. We treat the ODE solver as a back box, in which
inputs include the initial value, the derivative, and the range of time [0, T].

3.2.2 Continuous Backward Propagation

The following formula is the loss function L(.) of Neural ODEs
T
L(z(T)) = L | 2(0) + / F(a(),t,0)dt | . (3.6)
0

During backpropagation phrase, we need to find % to update 6 for optimizing the loss function
L. However, using backpropagation with chain rule requires storing a huge number of intermediate
quantities from forward. This makes the computational graph too large to hold in memory. This
problem can be solved efficiently by a well-known technique called The Adjoint Sensitive method.

The Adjoint Sensitive Method

Consider the constrained optimization problem

nbin L(z(T)) (3.7)
subject to
dz(t)
e f(z(t),t,0) =0, (3.8)
z(0) —x = 0. (3.9)

For convenience, we define two functions h(z(t),z(t),t,0) = dz(tt) — f(z(t),t,0) = 0 and ¢(z(0)) =

z(0) — x = 0. We also use an auxiliary function called the Lagrangian to convert the above problem
to the unconstrained optimization problem by using A(¢t) and u of Lagrange multipliers

T
L2 L(z(T)) + /)\(t)h(i(t), z(t),t,0)dt + ug(z(0)), (3.10)
0

where A(t) is a function of time, and p is a vector associating with the initial conditions.

Because ¢(z(0)) and h(z(t),z(t),t,0) are everywhere zero by construction, we may choose A and
freely, L(z(T)) = L, and we have
doL =dpL. (3.11)

The adjoint sensitive method is a well-known technique reach to dgL without computing directly
dgz during the backpropagation phrase by choosing A(t) and p, because computing dez is difficult in
most cases. Nextly, how to apply the adjoint method sensitive method will be explained in details.
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From Lagrange multipliers 3.10, we have

T
L = —I—//\ f)dt + pg(z(0)) (3.12)
0
= L(T) + MOa(t)g ~ [ 20Nt~ [ MOt + ng(a(0) (3.13)
0 0

= L)+ ADT) = A0)0) ~ [ @OAD + X0+ pgla0). (314)
0
With dpf = Opf + 0. fdez, dez(0) = 0 and dpg = dpz(0) 4+ dpx = 0, we get
do L

8Z(T)Ld9Z(T) + /\(T)d@Z(T) — )\(O)d@Z(O) — (A(t)dgz + A(t)dgf) dt 4+ pdgg (3.15)

St~

T T
(8 T)L—I- )\ ng / )0, f dgz dt — /)\ )Oa f dt. (3.16)
0 0

To avoid computing dgz(T) and dgz, we choose A(t) such that A(t) = —A(t)d,f with initial value
AMT) = Oy¢ryL and A(t) is called adjoint state. Then, Equation 3.16 of the derivativeof the Lagrangian
with respect to 6 simplifies to

T
doL = —/)\(t)agf dt. (3.17)
0
In summary, the derivative of the loss function with respect to 6 can be computed by solving

z(0) — 2(T) ’ f
A(0) — A(T)| = / ABo.f] dt, (3.18)
doL i —)\(t)agf

in which A(t) is a function of time with the initial value A(T) = 0,)L. Automatic differentiation can
efficiently evaluate the vector-Jacobian products —A(t)0,f and —A(t)9sf. We use an abbreviation
numerical ODE solver to solve 3.18. Algorithm 3 gives a summary of the full adjoint sensitive method
for the backpropagation of Neural ODEs-Net. ODESolver receives four elements as inputs: functions
of derivatives, initial values, an end time value, and a start time value. Outcomes are the last values
backward at time ¢ = 0. Another more modern approach demonstrated for the Adjoint Sensitive
method proved by Chen et al. (2018) is presented in the Appendix A.

Algorithm 3 The full Adjoint Sensitive Method for Neural ODEs
1. z(T) = ODESolver(f,z(0),0,T).
2: Compute N(T') = Oy¢ryL.
3: Use the abbreviation ODESolver

z(0) f z(T)
A0) | = ODESolver [ |-A(®)o.f|, |AT)|,T,0
doL(2(T)) —A(t)0 f 0

3.3 Implementation Neural ODEs-Net for Supervised
Learning

We explain the training of neural ODEs for supervised learning, in particular for classification and
regression.
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3.3.1 Choosing f(z(t),t,0) function

This section explains how to choose and design f function. We must emphasize that f can be
parameterized by any function, any neural network with an activation function is not necessarily
ReLU. The existence and uniqueness theorem always guarantees that there exists only one solution
to a first-order differential equation that satisfies a given initial condition. Following the defined
architecture in Chen et al. (2018), we choose f is a Convolutional Neural Network (CNN) or a
Multilayer Perceptrons (MLPs) with weights not depending on time.

3.3.2 Architecture

R4 R4

Figure 3.1: Diagram of a Neural ODEs-Net architecture followed by a
linear layer Dupont et al. (2019)

For classification and regression, our learning function goes from R¢ to R. We follow an example in
(Lin and Jegelka, 2018) for ResNets, and create a simple model architecture as Figure 3.1 with an
ODEs layer, followed by a linear layer. The ODEs map the input x € R? to a set of features in R,
Then, a linear function will map this set of feature from R? to R.

3.3.3 Benefits of Using Neural ODEs-Net

By using the Adjoint Sensitive method and treating the ODE solver as a black box, Neural ODE-Net
has low memory cost and scales linearly with problem size. Defining and evaluating models using
ODE solvers allows us to leverage computing power with memory efficiency.

Memory Benefits

With using the Adjoint Sensitive method in the backpropagtion phrase, there is no need to storing
any intermediate quantities of the forward backpropagation (Chen et al., 2018) We only need the last
outcome z(T') at time t = T during the forward phase. Therefore, we can train our models with
constant memory cost, O(1). There are reversible versions of ResNets (Gomez et al., 2017; Haber
and Ruthotto, 2017; Chang et al., 2017) giving the same constant memory advantage. However, their
architectures are restricted by partitioning the hidden units. Neural ODEs-Net does not have these
restrictions.

Computation Benefits

The history of the development of efficient and accurate ODE solvers has been more than 120 years
(Runge, 1895; Kutta, 1901; Hairer, 1987) with many methods such as the Euler method, Runge-Kutta
methods, Taylor methods, etc. Modern ODE solvers provide assurances of the approximation errors
growth, track the level of error and quickly adjust their evaluation strategy to accomplish the required
level of accuracy. All of these allow the evaluating cost to scale with the problem complexity.
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Chapter 4

Extensions of Neural ODEs-Net

4.1 Properties of Neural ODEs-Net

This section elucidates some special properties of Neural ODEs. They might be reasons for limitations
in using Neural ODEs. Each following subsection is constructed with a property at the beginning and
its disadvantages in the end.

4.1.1 Trajectories in Neural ODEs-Net cannot intersect

t=20 t=T

Figure 4.1: Diagram of a simple model architecture with an ODE layer
For convenience, we derive definitions for both flows and trajectories of ODE in this part.

ODE flows

A flow ¢, : R — R? is a hidden state at time ¢ of neural ODEs with initial condition x. This means
that ¢;(x) = z(t). We are only concerned with the final time 7', so we define the features of the ODE
as ¢(x) = ¢r(x). ¢(x) is also called the feature mapping. Figure 4.1 is a simple model architecture
with an ODE layer and a flow ¢(z) within.

ODE trajectories

An important thing needed to emphasize is that ODE trajectories do not intersect each other. The
following is a proof for this.

Proposition 4.1.1. Let z1(t) and za(t) be two trajectories of ODE 3.4 with two different initial
conditions, z1(0) # z2(0). Then z1(t) # z2(t) for allt € (0,T). This implies that ODE trajectories do
not intersect each other.

Proof. Suppose that there exists at least a value ¢ € (0,7 such that z; () = z2(f) . We define a new
IVP with the initial condition z(#) = z;(#) = z2(#) and solve it backwards to t = 0. As the proof
of existence and uniqueness of Solution in the background section, the solution at ¢ = 0 is unique.
This means that z,(0) = z2(0). However, z;(0) cannot equal to z2(0), so our supposition is false.
Therefore, z(t) # z2(t) for all t € (0,77, this implies ODE trajectories cannot intersect. O

27



Disadvantages: If a function has the intersecting trajectories, then Neural ODEs cannot represent
it. In section 4.2, we will prove this problem for a class of functions. It is clear that the original Neural
ODE:s is not universal approximation.

4.1.2 Neural ODEs-Net describes a Homeomorphism

Dupont et al. (2019) showed a brief proof that the feature mapping ¢; is a homeomorphism. The
following is the standard form of the Gronwall inequality which is used in this proof.

Theorem 4.1.2 (The Gronwall inequality). Let U C R? be an open set. Let f : [ti,ts] — R be a
continuous function and let z,,2o : [t1,t2] — R satisfy the IVPs

dzéliit(t) = f(z1(¢),t), =z1(t1) =x1, (4.1)
dz;t(t) — F(22(8),1),  za(t1) = xo. (4.2)
Also assume there is a constant C > 0 so that
[£(z2(2), 1) — £(z1 (1), 1)|| < COl[z2(t) — z1(D)]]- (4.3)
Then for t € [t1,ts]
||z2(t) — 21 (£)]] < 1] |xg — x4 |- (4.4)

A full proof of the Gronwall inequality can be found in. (Howard, 1998)
Theorem 4.1.3. For all t € [0,T), the feature mapping ¢; : RY — R is a homeomorphism.

Proof. A homeomorphism function is a continuous bijection that has a continuous inverse function.
To prove ¢; is a homeomorphism, we need to show that ¢; satisfies both three following properties

(1) ¢: is continuous:
Consider two initial conditions of the ODE, z;(0) = x and 2z2(0) = x + ¢ with § is the difference
between z;(0) and z2(0). Using Gronwall inequality, we have

122(t) — 21 (2)]] < e![|21(0) — 2z2(0)]| = e“*|}0]], (4.5)
with C is a constant, C' > 0. Rewriting in terms of ¢;(x), we get
[l (3 +8) — e (x)[| < e“[[3]]. (4.6)
If setting § — 0, then ¢,(x) is continuous in x for all ¢ € [0, 7.
(2) ¢: is a bijection:

To prove ¢, is a bijection,we need to show that ¢; is both onto and one-to-one. Because ¢; : R — RY,
it is onto itself. We have to prove that ¢¢(x1) # ¢1(x2) for each x; # x5.

Suppose there exists initial conditions x; # X2 such that ¢;(x1) = ¢(x2). We also define an IVP
system starting from ¢;(x1) backwards to time ¢t = 0. Since satisfying the existence and uniqueness
condition, its solution is unique, so x; = Xs, leading our supposition is false. This means that
di(x1) # di(x2) for each x1 # x9, then ¢, is one-to-one.

(3)p; ! is continuous:
The inverse of ¢ is ¢_¢, then ¢, L= ¢_,. To prove ¢, is continuous, we also define an IVP backwards
in time and use the Gronwall inequality as the proof in part (a). We have

_ 1
lp—t(x+0) — (x| < e Ct||5||:ﬁ||5\|, (4.7)
with C' is a constant, C' > 0. Let setting § — 0, then ¢_; is continuous.

In summary, ¢; satisfies both three above properties, so ¢; is a homeomorphism. O

Disadvantages: Because 6; is a homeomorphism, this leads to a chain of disadvantages that are
proved in studies of homeomorphisms. The features of Neural ODEs preserve the topology of the
input space. This means that Neural ODEs can only deform the input space and cannot tear a
connected region apart (Dupont et al., 2019). For example, it is not only difficult to learn a good
approximation but also numerically expensive to solve for a binary classification problem where not
existing a hyperplane between two labeled input sets.
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4.2 Functions Neural ODEs-Net cannot Represent

4.2.1 Not increasing Functions in One-dimensional Space

In this section, we will demonstrate that there is no ODE for representing a non-increasing function
h : R — R. Therefore, Neural ODEs cannot learn the class of this function.

Proposition 4.2.1. Neural ODFEs-Net cannot represent a not increasing function h : R — R.

Proof. There exists zg,yo € R such that o > yo and h(xg) < h(yp). We will prove that two
trajectories corresponding to xzg — h(xg) and yo — h(yp) must cross each other.

Suppose there is an g such that two trajectories z1(t) and z9(¢) with ¢ € [0, T] where

21(0)
22(0)
We define z(t) = z1(t) — 22(t). Since z;(t) and z3(t) are solutions of the IVP, they are continuous
[ref-Coddington]. Because both z1(t) and 25(t) are continuous, so z(t) is also continuous. We have
z2(0) = xo —yo > 0 and z(T) = h(xo) — h(yo) < 0, so z(0).2(T) < 0. By the Intermediate Value
Theorem, there exists some ¢ € [0,T] where z() = 0, i.e where 2;(f) = 22(f). Therefore, z;(¢) and

29(t) intersect. However, section 4.1.1 proved that trajectories in Neural ODEs-Net cannot intersect.
Thus, Neural ODEs-Net cannot represent non-increasing functions. O

Zo z1 (T) = h(l“o)

o =(T) = hiy) (48)

4.2.2 Classes of Functions in d-dimensional Space

Proposition 4.2.2. Neural ODEs-Net cannot represent g(x) : R¢ — R

g(x) =1 df r <|x|[<ry
i which 0 < rqy < ra.
(a) (b)
Figure 4.2: (a) Diagram of g(x) in 2-dimentional space. (b) An example of
the feature mapping ¢(x) from input data to features.
Proof. Let define a disk A = {x € R? : ||x|| < r} where g(x) = —1 with boundary
0A = {x € R? : |x|| = 7} and interior int(A) = {x € R? : ||x|| < 71}, and let
B = {x € RY : r; < |x|]| £ r2} denotes the annulus where g(x) = —1. To map points in

int(A) to —1 and points in B to +1 by using Neural ODEs-Net, the linear layer as describing in 3.3.2
must map the features of ¢(int(A)) to —1 and the features of ¢(B) to +1. This means that ¢(int(A))
and ¢(B) must be linearly separable. We will prove that it is impossible with ¢ is a homeomorphism.

We have A C B, so all points in 04 map to +1 and all points in int(A) map to —1. So ¢(int(A))
and ¢(B) are linearly separable if and only if ¢(int(A)) and ¢(0A) are linearly separable.

Through a homeomorphism, points on boundary will map to points on boundary and point in

the interior to points in the interior (Armstrong, 1979). This means ¢(int(A)) = int(¢(A)) and
@(0A) = I(¢(A)) through the feature transformation ¢. Therefore, we need to show that it is
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impossible for int(¢(A)) and 9(¢(A)) separate linearly.

Suppose there exists a hyperplane such that all points of int(¢(A)) and 9(¢(A)) are located on opposite
sides of this hyperplane. This means that there is a linear function G(x) = w’x and a constant C
such that G(x) > C for all x € 9(¢(A)) and G(x) < C for all x € int(¢(A)). Because A is a connected
subset and ¢ is a homeomorphism, so ¢(A) is also a connected subset. Thus, each point x € int(¢(A))
can be rewritten as a combination of points in the boundary 9(¢(A4)). So x = ax; + (1 — a)xg with
x1,%X2 € 0(¢(4)) and 0 < o < 1. We have

G(x) =wlx
=wl(ax; + (1 - a)xa)
=awlx; + (1 - a)wlx,
>aC+(1-a)C
=C.

Since G(x) = C, all points of both int(¢(A)) and d(p(A)) are in the same side of the hyperplane.
Therefore, ¢(int(A)) and ¢(B) are not linearly separable. This implies that Neural ODEs-Net cannot
represent g(x). O

In summary, Neural ODEs-Net cannot represent the two above functions. It is so clear that Neural
ODEs-Net is not a universal approximator. This is a serious problem because any paucity of
performance can remove the need for using Neural ODEs-Net. The next sections show methods
to improve Neural ODEs-Net.

4.3 Neural ODEs-Net with Extra Dimensions

The previous section explained that Neural ODEs-Net is not universal approximation, it cannot always
represent every function. To address these limitations of Neural ODEs-Net, a simple solution is to lift
the model to a higher dimensional space from R? to R9*P. This approach is presented in (Dupont
et al., 2019) by defining a function u(t) € R? in the additional part of the space. It achieves better
generalization and lower losses than the pure Neural ODEs-Net.

d |z(t) z(t) z(0) X0

— = ], = 4.10

it [u(t) I\ fu) w(0)| = |0 (4.10)
The data point xg is concatenated with a vector of ¢ zeros and the ODE is solved on the augmented
space R4P. The trajectories may not intersect in this augmented space when p is large enough.

4.4 Neural ODEs-Net with Evolutionary Parameters
In the original Neural ODEs-Net (Chen et al., 2018), the weight 0 is independent on time ¢. We have

dz(t)
dt

:f(z(t)a07t)’ (411)

with 0 is fixed over time, the model is easier to train, but it leads to the lack of flexibility. Limiting
the number parameters might be the cause of decreasing the approximation capacity. To solve this
problem, a natural way is to allow evolution of the neural network parameters. We has form

dz(t)

“dt = f(Z(t), a(t)7t)7 (412)

where, 0(t) depends on time ¢. Similarly to z(t), we use another Neural ODEs-Net to model the

evolution of §(¢t). With initial condition 6(0) = 6y, we assume
da(t
PO — g0(0).0.1), (113)

with w is a parameter to characterize the weight network.
We can model simply the evolution of both weights 6(t) and activation z(t) with a coupled system of
ODEs by the following formulation
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T
z(T) = z(0) + / f(z(t),0(t),t)dt, z(0) =x “Activation network”
H (4.14)
o(t) = 6(0) + / g(0(t),w,t)dt,  0(0) =0, “Weight network”
0

in which, x is the input, w is fixed over time. In this new version of Neural ODEs-Net, we will use
a system of coupled ODEs: one ODE for the activations evolving in time and one for the model
parameters. We will fix a value for w instead of fixing parameter 0 like the original version in (Chen
et al., 2018). If g = 0, then it is exactly the original Neural ODEs-Net with fixed weights.

Zhang et al. (2019) also investigates a formulation that is sightly general than the formulation defined
by 4.14. An auxiliary dynamic system is defined for w(¢) which is used to compute 6(¢).

In particular, we have a constrained optimization problem

1
IIllIlj = N Z 3717 yl + R(w(b ) (415)

p,wo

subject to
dZ(tt) — f(Z(t), H(t), t)7 Z(O) = Zp ”Activation ODE”,
M = g(w(t),p, 1), w(0) = wo ?Evolution ODE”,

0(t) / K(t — 1yw(r)dr,

with (z,1;) is the *" training sample and its label, R is a regularization operator and K is a
time convolution kernel. To perform backpropagation for this formulation, we need first to form
the Lagrangian operator as the following:

L:J<z<T>>+/Ta<>(—f<< )dt+/6 (5 - stw®.p.0) a
+/7 /Kt—T 7)dr | dt,

0

in which «(t), 5(¢) and ~y(t) are the adjoint variables. Then, we also use the adjoint sensitive methods
to find derivatives in the backward phrase. The derivations of £ with respect to z, 6, w, wo and p as
below:

agizTT) +ar =0, %‘t)‘ - (gﬁ ) at)=0;  (0L,) (4.16)
(gg ) o) 41 =0 (9Ls) (4.17)
T T

S0 (58) s~ [ KT - onmar=0sm =0 @6 (49
—5(0) + (,%Z = Gwo; (OLuwy) (4.19)

oR [ [0\"

q .

& / (ap) B =g (OL), (4.20)

in which (.)7 is the transpose.
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In the forward phrase, given wg and p, we compute w(t), then 6(t) can be computed. By using 6(¢),
we can find the activation z(t).

In the backward phrase, we solve the first adjoint equation for a(t) with the initial condition ar =
—%ZTT), in which zp is computed from the continuous forward propagation. Then, we use the
computed «(t) to find the second adjoint variable v(t). Using the computed ~(t), we can solve the
third adjoint equation to get values of §(¢). By plugging S(¢) in Equation 4.19 and 4.20, we can

compute the gradients g, and gy, -
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Chapter 5

Experimental Results

We apply Neural ODEs for image classification, with using the CIFAR-10 dataset. The CIFAR-10
dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. The dataset is
divided into ten classes. The classes are mutual exclusive which means there is no overlap among ten
classes. There are 50000 training images and 10000 test images, in which contains 195 train batches
and 78 test batches. They will be trained with Stochastic Gradient Descent algorithm.
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Figure 5.1: Ten classes in CIFAR-10 dataset and ten images from each.

Source: https://www.cs.toronto.edu/ kriz/cifar.html

We perform experiments on CIFAR-10 dataset using three models: the original Neural ODEs-Net,
Neural ODEs-Net (NODEs) with Extra Dimensions and Neural ODEs-Net with Evolutionary
Parameters, in which we use convolutional architectures for f(h(¢),¢,0). The input x is an
image, which has dimensionality of 32 x 32 x 3. In NODEs models, we perform experiments with
extra dimension p = 1 and p = 5, that makes the input images have dimensionality of 32 x 32 x (3+d).

As mentioned in above section, NODEs with extra dimensions is an extension of neural ODEs, in
which we solve ordinary differential equations in R*t? instead of R?.

Experimental results for models are shown in figure 5.2. As we can see, two extensions of Neural
ODEs models obtain lower loss and train faster than original Neural ODEs model. For the ANODESs
with extra dimensions, the higher the value of p is, the less time we need to get a certain loss. It is
also expected that the higher the value of p, the better model we received. However, in figure 5.3, it
is shown that the very high value of p causes over-fitting problems.

In figure 5.2(a), it is easy to see that five extra dimensions model achieve the best training loss, but

in figure 5.2(b) and figure 5.3(c), validation losses increase rapidly, that means this model may be
over-fitting. While the neural ODEs model’s training losses are quite unstable, that they increase
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Figure 5.2: Training loss and validation loss for original model and
augmented models on CIFAR-10 dataset. (a) Training losses (b)
Validation losses. Note that p indicates the numbers of augmented
dimensions, so p = 0 indicates the original neural ODEs-Net model.
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Figure 5.3: Training loss and validation loss for original model and
augmented models on CIFAR-10 dataset. (a) Neural ODEs Model (b)
NODEs with Evolutionary Parameters Model.

Another extension of neural ODEs-Net is NODEs with evolutionary parameters, in which parameter
6(t) depends on time variable ¢t. Figure 5.4 shows the experimental results for comparing training loss
between the original neural ODEs-Net and NODEs-Net with evolutionary parameters. The model of
NODEs with evolutionary parameters gives better training losses compared to the original model.

Table 5.1 compares test accuracy among original neural ODEs model and its extension models, which
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Figure 5.4: Training loss and validation loss for original model and
augmented models with evolutionary parameters on CIFAR-10 dataset. (a)
Training losses, (b) Training losses of NODEs with evolutionary model, (c)
Validation losses, (d) Validation losses of NODEs with evolutionary model.

Min Max  Average
Original Neural ODEs-Net 42.81% 65.63%  51.76%
NODEs-Net with Extra Dimensions p =1 56.25% 69.92%  62.27%
NODEs-Net with Extra Dimensions p = 5 40.63% 71.88%  55.45%
NODEs-Net with Evolutionary Parameters 76.92% 77.45%  77.30%

Table 5.1: Test accuracy for CIFAR-10 dataset.

includes minimum, maximum and average accuracy. We perform testing through test sets and receive
the table of result.

The NODEs with augmented dimensions model and the NODEs with evolutionary parameters model
achieve higher accuracy than the original model; especially, the NODEs with one extra dimension
and the NODEs with evolutionary parameters gives very high results. The NODEs with five extra
dimensions gives high accuracy, but it is an over-fitting model, that leads to a skew-learn situation.
The NODEs with evolutionary parameters performs the best accuracy, and the other extension models
also achieve quite good result that can compare to other networks as feedforwarn neural networks or
residual neural networks.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In summary, Neural ODEs-Net was a breakthrough in the development of deep learning. There are
three main things we presented in this thesis.

Firstly, we presented about Neural ODEs-Net. In which, we identify clearly and definitely its
architecture, its learning process, and how to apply it for a supervised learning problem, after
recalling some background about ODE and a general neural network. Problems in neural networks
led the

Secondly, properties of Neural ODEs-Net were pointed out clearly that led to the strengths and
weaknesses in using it. Defining and implementing neural networks using ODE solvers brought
benefits in effective memory and took advantage of adaptive computing when ODE solvers were
developed more than 120 years.

Thirdly, two extensions of Neural ODEs-Net that improved both performance and representation
ability of Neural ODEs-Net were presented in this thesis. One of them was to lift the original model
to a higher dimensional space. The other was about the evolutionary of parameters.

Lastly, our experiments showed that the extensions models learn better then the original neural
ODEs-Net model and achieve higher accuracy. However, it is also bring many problems, which we
can improve models to solve in the future.

6.2 Future Works

Neural ODEs-Net still has many limitations that need to be improved to be widely applied in
practice. In the future we wish to improve the following two things:

The training time: During the training, we found that Neural ODEs-Net has a very long training
time compared to Resnets. This is a huge obstacle to bringing Neural ODEs-Net to practical
problems, although the low memory usage is an outstanding advantage of Neural ODEs-Net. Finlay
et al. (2020) showed it to be quite possible. However, we still need to improve Neural ODE-Net such
that it is competitive to other existing models.

The representation ability: The original Neural ODEs-Net cannot represent some functions such
as the non-increasing function which has intersected trajectories. Thus, Neural ODEs-Net is not a
universal approximator. A new promising result which is proved that it is a universal approximator
was introduced by Kidger et al. (2020) with providing additional theoretical results. This is the
continuous analogue of an RNN that subsumes apparently-similar ODE models in which the vector
field depends directly upon continuous data.
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Appendix A

The Adjoint Sensitive Method

A.1 A Proof of the Adjoint State

We define a function A(t) called adjoint state by:

_dL
 dz(t)

A)

We will prove that the differential equation of the above function respect to ¢

d\(t) B Of(z(t),t,0)
o - MO,

With a continuous hidden state, let define

dt

z(t+¢) =z(t) + w (z(t),t,0)dt = T.(z(t), 1),

in which € is an change in time. After applying chain rule, the results will be

dL dL  dz(t+¢) )
= lentl At) = At
dz(t) _ da(t +e) da(t) or equivalently, (t) (t+e¢)

Using Taylor series around z(t), we have:

z(t +¢) = To(z(t),t) = z(t) + e f(z(t),t,0) + O(?)

is

0T (z
0z

(1), )

(t)

Therefore,
d\(t) ~ m At +e)— At)
dt e—0+ €
0T:(z(t),t
i At +e¢) —)\(t+e)#
e—0+ 5
M e) - Mt )y (al) +2f(alt).1,6) + O))
a e—=0t £
L M A+ [14 21200 1 O(e2)]
e—0t €
. 0f(z(t),t,9)
= 1 — _—
lim, At +¢) Da(t) + O(e)
_ 0f(z(t),t,0)
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A.2 Computing Gradients for Backpropagation

In this section, we will explain how dczlft) and % look like.

dL
= At A.12
dZ(to) ( 0) ( )
to
dA(t
= At1)+ Jdt (A.13)
dt
ty
[NCICORY)
z(t),t
= AMt1)— | \Nt)—F~= A4
)= [ a0 (A14)
ty
Note that parameters # independent on t, this means 6 is fixed over the time, so
a0(t) dt(t)

Similarly, we define \p(t) = #é) with setting Ag(¢1) = 0, then prove that

&= M) (A.16)
_ Ag(tl)—/)\(t)TWdt (A17)
- / A(t)TWdt (A.18)
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